Z-eigenvalue methods for a global polynomial optimization problem

As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2009-05, Vol.118 (2), p.301-316
Hauptverfasser: Qi, Liqun, Wang, Fei, Wang, Yiju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 2
container_start_page 301
container_title Mathematical programming
container_volume 118
creator Qi, Liqun
Wang, Fei
Wang, Yiju
description As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvalue method for this problem when the dimension is two. In multidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising.
doi_str_mv 10.1007/s10107-007-0193-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34958686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34958686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f2f5b3ae734851c0a1cecfb949cba756bf869418c316acc7c7c1454bb840dea83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG9F0Fs106RpelwWv0DwohcvIckma5a0WZNWWH-9LV0UBBmGGZhn3hlehM4BXwPG1U0CDLjK8ZhQk5wdoBlQwnLKKDtEM4yLMi8Z4GN0ktIGYwyE8xlavOXGrU37KX1vssZ072GVMhtiJrO1D0r6bBv8rg2NG9qw7VzjvmTnQpttY1DeNKfoyEqfzNm-ztHr3e3L8iF_er5_XC6eck2h7nJb2FIRaSpCeQkaS9BGW1XTWitZlUxZzmoKXBNgUutqCKAlVYpTvDKSkzm6mnSHux-9SZ1oXNLGe9ma0CdBaF1yxtkAXvwBN6GP7fCbKEjBKS94NUAwQTqGlKKxYhtdI-NOABajo2JyVIzt6KgYhS_3wjJp6W2UrXbpZ7EAwJxWMHDFxKVh1K5N_H3gf_FvzzeFuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232848287</pqid></control><display><type>article</type><title>Z-eigenvalue methods for a global polynomial optimization problem</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Qi, Liqun ; Wang, Fei ; Wang, Yiju</creator><creatorcontrib>Qi, Liqun ; Wang, Fei ; Wang, Yiju</creatorcontrib><description>As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvalue method for this problem when the dimension is two. In multidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-007-0193-6</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>African American studies ; Applied mathematics ; Applied sciences ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Eigenvalues ; Eigenvectors ; Exact sciences and technology ; Full Length Paper ; Heuristic ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Methods ; Numerical Analysis ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Polynomials ; Theoretical</subject><ispartof>Mathematical programming, 2009-05, Vol.118 (2), p.301-316</ispartof><rights>Springer-Verlag 2007</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f2f5b3ae734851c0a1cecfb949cba756bf869418c316acc7c7c1454bb840dea83</citedby><cites>FETCH-LOGICAL-c419t-f2f5b3ae734851c0a1cecfb949cba756bf869418c316acc7c7c1454bb840dea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-007-0193-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-007-0193-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21108471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Liqun</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Yiju</creatorcontrib><title>Z-eigenvalue methods for a global polynomial optimization problem</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvalue method for this problem when the dimension is two. In multidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising.</description><subject>African American studies</subject><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Exact sciences and technology</subject><subject>Full Length Paper</subject><subject>Heuristic</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Methods</subject><subject>Numerical Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG9F0Fs106RpelwWv0DwohcvIckma5a0WZNWWH-9LV0UBBmGGZhn3hlehM4BXwPG1U0CDLjK8ZhQk5wdoBlQwnLKKDtEM4yLMi8Z4GN0ktIGYwyE8xlavOXGrU37KX1vssZ072GVMhtiJrO1D0r6bBv8rg2NG9qw7VzjvmTnQpttY1DeNKfoyEqfzNm-ztHr3e3L8iF_er5_XC6eck2h7nJb2FIRaSpCeQkaS9BGW1XTWitZlUxZzmoKXBNgUutqCKAlVYpTvDKSkzm6mnSHux-9SZ1oXNLGe9ma0CdBaF1yxtkAXvwBN6GP7fCbKEjBKS94NUAwQTqGlKKxYhtdI-NOABajo2JyVIzt6KgYhS_3wjJp6W2UrXbpZ7EAwJxWMHDFxKVh1K5N_H3gf_FvzzeFuw</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Qi, Liqun</creator><creator>Wang, Fei</creator><creator>Wang, Yiju</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090501</creationdate><title>Z-eigenvalue methods for a global polynomial optimization problem</title><author>Qi, Liqun ; Wang, Fei ; Wang, Yiju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f2f5b3ae734851c0a1cecfb949cba756bf869418c316acc7c7c1454bb840dea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>African American studies</topic><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Exact sciences and technology</topic><topic>Full Length Paper</topic><topic>Heuristic</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Methods</topic><topic>Numerical Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Liqun</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Yiju</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Liqun</au><au>Wang, Fei</au><au>Wang, Yiju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Z-eigenvalue methods for a global polynomial optimization problem</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>118</volume><issue>2</issue><spage>301</spage><epage>316</epage><pages>301-316</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvalue method for this problem when the dimension is two. In multidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10107-007-0193-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2009-05, Vol.118 (2), p.301-316
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_34958686
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects African American studies
Applied mathematics
Applied sciences
Approximation
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Eigenvalues
Eigenvectors
Exact sciences and technology
Full Length Paper
Heuristic
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Optimization
Polynomials
Theoretical
title Z-eigenvalue methods for a global polynomial optimization problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Z-eigenvalue%20methods%20for%20a%20global%20polynomial%20optimization%20problem&rft.jtitle=Mathematical%20programming&rft.au=Qi,%20Liqun&rft.date=2009-05-01&rft.volume=118&rft.issue=2&rft.spage=301&rft.epage=316&rft.pages=301-316&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-007-0193-6&rft_dat=%3Cproquest_cross%3E34958686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232848287&rft_id=info:pmid/&rfr_iscdi=true