A contribution to the exact modal solution of in-plane beam structures
The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler–Bernoulli beams, are obtained by solving a transcendental, non-linear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2009-12, Vol.328 (4), p.586-606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 4 |
container_start_page | 586 |
container_title | Journal of sound and vibration |
container_volume | 328 |
creator | Dias, C.A.N. Alves, M. |
description | The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler–Bernoulli beams, are obtained by solving a transcendental, non-linear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick–Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included. |
doi_str_mv | 10.1016/j.jsv.2009.08.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34957498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X09006841</els_id><sourcerecordid>34957498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-12eab6bf15b593f18ec911705eea3237f0c69866f81e9760687df22b4c181aa53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjB7B5gS3h7CSOI6aqooBUiQUkNstxz8JVGhfbqeDfkyoVI9MN99x7dw8hNwxyBkzcb_JN3OccoMlB5sDZCZkxaKpMVkKekhkA51kp4OOcXMS4gREsi3JGlnNqfJ-Ca4fkfE-Tp-kTKX5rk-jWr3VHo--mnrfU9dmu0z3SFvWWxhQGk4aA8YqcWd1FvD7WS_K-fHxbPGer16eXxXyVmaKSKWMcdStay6q2agrLJJqGsRoqRF3worZgRCOFsJJhUwsQsl5bztvSMMm0ropLcjfl7oL_GjAmtXXRYHe4yQ9RFWVT1WUjR5BNoAk-xoBW7YLb6vCjGKiDMbVRozF1MKZAqtHYOHN7DNfR6M4G3RsX_wY5Z1BKcch-mDgcP907DCoah73BtQtoklp798-WX7CdgJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34957498</pqid></control><display><type>article</type><title>A contribution to the exact modal solution of in-plane beam structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dias, C.A.N. ; Alves, M.</creator><creatorcontrib>Dias, C.A.N. ; Alves, M.</creatorcontrib><description>The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler–Bernoulli beams, are obtained by solving a transcendental, non-linear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick–Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2009.08.021</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Drives ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linkage mechanisms, cams ; Mechanical engineering. Machine design ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2009-12, Vol.328 (4), p.586-606</ispartof><rights>2008 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-12eab6bf15b593f18ec911705eea3237f0c69866f81e9760687df22b4c181aa53</citedby><cites>FETCH-LOGICAL-c358t-12eab6bf15b593f18ec911705eea3237f0c69866f81e9760687df22b4c181aa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2009.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22104868$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dias, C.A.N.</creatorcontrib><creatorcontrib>Alves, M.</creatorcontrib><title>A contribution to the exact modal solution of in-plane beam structures</title><title>Journal of sound and vibration</title><description>The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler–Bernoulli beams, are obtained by solving a transcendental, non-linear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick–Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included.</description><subject>Applied sciences</subject><subject>Drives</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linkage mechanisms, cams</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjB7B5gS3h7CSOI6aqooBUiQUkNstxz8JVGhfbqeDfkyoVI9MN99x7dw8hNwxyBkzcb_JN3OccoMlB5sDZCZkxaKpMVkKekhkA51kp4OOcXMS4gREsi3JGlnNqfJ-Ca4fkfE-Tp-kTKX5rk-jWr3VHo--mnrfU9dmu0z3SFvWWxhQGk4aA8YqcWd1FvD7WS_K-fHxbPGer16eXxXyVmaKSKWMcdStay6q2agrLJJqGsRoqRF3worZgRCOFsJJhUwsQsl5bztvSMMm0ropLcjfl7oL_GjAmtXXRYHe4yQ9RFWVT1WUjR5BNoAk-xoBW7YLb6vCjGKiDMbVRozF1MKZAqtHYOHN7DNfR6M4G3RsX_wY5Z1BKcch-mDgcP907DCoah73BtQtoklp798-WX7CdgJI</recordid><startdate>20091225</startdate><enddate>20091225</enddate><creator>Dias, C.A.N.</creator><creator>Alves, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20091225</creationdate><title>A contribution to the exact modal solution of in-plane beam structures</title><author>Dias, C.A.N. ; Alves, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-12eab6bf15b593f18ec911705eea3237f0c69866f81e9760687df22b4c181aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Drives</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linkage mechanisms, cams</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, C.A.N.</creatorcontrib><creatorcontrib>Alves, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, C.A.N.</au><au>Alves, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contribution to the exact modal solution of in-plane beam structures</atitle><jtitle>Journal of sound and vibration</jtitle><date>2009-12-25</date><risdate>2009</risdate><volume>328</volume><issue>4</issue><spage>586</spage><epage>606</epage><pages>586-606</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler–Bernoulli beams, are obtained by solving a transcendental, non-linear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick–Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2009.08.021</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2009-12, Vol.328 (4), p.586-606 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_34957498 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Drives Exact sciences and technology Fundamental areas of phenomenology (including applications) Linkage mechanisms, cams Mechanical engineering. Machine design Physics Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | A contribution to the exact modal solution of in-plane beam structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contribution%20to%20the%20exact%20modal%20solution%20of%20in-plane%20beam%20structures&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Dias,%20C.A.N.&rft.date=2009-12-25&rft.volume=328&rft.issue=4&rft.spage=586&rft.epage=606&rft.pages=586-606&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2009.08.021&rft_dat=%3Cproquest_cross%3E34957498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34957498&rft_id=info:pmid/&rft_els_id=S0022460X09006841&rfr_iscdi=true |