Beach profile evolution as an inverse problem

Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continental shelf research 2009-10, Vol.29 (18), p.2234-2239
Hauptverfasser: Karunarathna, Harshinie, Reeve, Dominic E., Spivack, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2239
container_issue 18
container_start_page 2234
container_title Continental shelf research
container_volume 29
creator Karunarathna, Harshinie
Reeve, Dominic E.
Spivack, Mark
description Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.
doi_str_mv 10.1016/j.csr.2009.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34957108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0278434309002593</els_id><sourcerecordid>34957108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-AG89iZfWmSRNUzzp4hcseNFzSNsJZum2a9Jd8N-bZT2vp4F3nncGHsauEQoEVHeroo2h4AB1AbpIyQmboa5EruqyPGUz4JXOpZDinF3EuAKAStXVjOWPZNuvbBNG53vKaDf228mPQ2ZjZofMDzsKkfb7pqf1JTtzto909Tfn7PP56WPxmi_fX94WD8vcSiyn3EluEdtaikZ2wK3VwgqLwBVwSG8JOFcdWtdxbRunVQmOk22wUzU4q8Sc3Rzupr_fW4qTWfvYUt_bgcZtNELWZYWg_wV5ghSWmMDboyBWIimRUsuE4gFtwxhjIGc2wa9t-DEIZi_brEySbfayDWiTktS5P3QoWdl5Cia2noaWOh-onUw3-iPtX0bkhWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730074484</pqid></control><display><type>article</type><title>Beach profile evolution as an inverse problem</title><source>Elsevier ScienceDirect Journals</source><creator>Karunarathna, Harshinie ; Reeve, Dominic E. ; Spivack, Mark</creator><creatorcontrib>Karunarathna, Harshinie ; Reeve, Dominic E. ; Spivack, Mark</creatorcontrib><description>Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.</description><identifier>ISSN: 0278-4343</identifier><identifier>EISSN: 1873-6955</identifier><identifier>DOI: 10.1016/j.csr.2009.08.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beach profiles ; Beaches ; Coastal morphology ; Continental shelves ; Diffusion coefficient ; Evolution ; Inverse ; Inverse method ; Marine ; Mathematical analysis ; Mathematical models ; Source function</subject><ispartof>Continental shelf research, 2009-10, Vol.29 (18), p.2234-2239</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</citedby><cites>FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0278434309002593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Karunarathna, Harshinie</creatorcontrib><creatorcontrib>Reeve, Dominic E.</creatorcontrib><creatorcontrib>Spivack, Mark</creatorcontrib><title>Beach profile evolution as an inverse problem</title><title>Continental shelf research</title><description>Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.</description><subject>Beach profiles</subject><subject>Beaches</subject><subject>Coastal morphology</subject><subject>Continental shelves</subject><subject>Diffusion coefficient</subject><subject>Evolution</subject><subject>Inverse</subject><subject>Inverse method</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Source function</subject><issn>0278-4343</issn><issn>1873-6955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-AG89iZfWmSRNUzzp4hcseNFzSNsJZum2a9Jd8N-bZT2vp4F3nncGHsauEQoEVHeroo2h4AB1AbpIyQmboa5EruqyPGUz4JXOpZDinF3EuAKAStXVjOWPZNuvbBNG53vKaDf228mPQ2ZjZofMDzsKkfb7pqf1JTtzto909Tfn7PP56WPxmi_fX94WD8vcSiyn3EluEdtaikZ2wK3VwgqLwBVwSG8JOFcdWtdxbRunVQmOk22wUzU4q8Sc3Rzupr_fW4qTWfvYUt_bgcZtNELWZYWg_wV5ghSWmMDboyBWIimRUsuE4gFtwxhjIGc2wa9t-DEIZi_brEySbfayDWiTktS5P3QoWdl5Cia2noaWOh-onUw3-iPtX0bkhWw</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Karunarathna, Harshinie</creator><creator>Reeve, Dominic E.</creator><creator>Spivack, Mark</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20091015</creationdate><title>Beach profile evolution as an inverse problem</title><author>Karunarathna, Harshinie ; Reeve, Dominic E. ; Spivack, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Beach profiles</topic><topic>Beaches</topic><topic>Coastal morphology</topic><topic>Continental shelves</topic><topic>Diffusion coefficient</topic><topic>Evolution</topic><topic>Inverse</topic><topic>Inverse method</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Source function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karunarathna, Harshinie</creatorcontrib><creatorcontrib>Reeve, Dominic E.</creatorcontrib><creatorcontrib>Spivack, Mark</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Continental shelf research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karunarathna, Harshinie</au><au>Reeve, Dominic E.</au><au>Spivack, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beach profile evolution as an inverse problem</atitle><jtitle>Continental shelf research</jtitle><date>2009-10-15</date><risdate>2009</risdate><volume>29</volume><issue>18</issue><spage>2234</spage><epage>2239</epage><pages>2234-2239</pages><issn>0278-4343</issn><eissn>1873-6955</eissn><abstract>Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csr.2009.08.016</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-4343
ispartof Continental shelf research, 2009-10, Vol.29 (18), p.2234-2239
issn 0278-4343
1873-6955
language eng
recordid cdi_proquest_miscellaneous_34957108
source Elsevier ScienceDirect Journals
subjects Beach profiles
Beaches
Coastal morphology
Continental shelves
Diffusion coefficient
Evolution
Inverse
Inverse method
Marine
Mathematical analysis
Mathematical models
Source function
title Beach profile evolution as an inverse problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beach%20profile%20evolution%20as%20an%20inverse%20problem&rft.jtitle=Continental%20shelf%20research&rft.au=Karunarathna,%20Harshinie&rft.date=2009-10-15&rft.volume=29&rft.issue=18&rft.spage=2234&rft.epage=2239&rft.pages=2234-2239&rft.issn=0278-4343&rft.eissn=1873-6955&rft_id=info:doi/10.1016/j.csr.2009.08.016&rft_dat=%3Cproquest_cross%3E34957108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730074484&rft_id=info:pmid/&rft_els_id=S0278434309002593&rfr_iscdi=true