Beach profile evolution as an inverse problem
Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model paramete...
Gespeichert in:
Veröffentlicht in: | Continental shelf research 2009-10, Vol.29 (18), p.2234-2239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2239 |
---|---|
container_issue | 18 |
container_start_page | 2234 |
container_title | Continental shelf research |
container_volume | 29 |
creator | Karunarathna, Harshinie Reeve, Dominic E. Spivack, Mark |
description | Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation. |
doi_str_mv | 10.1016/j.csr.2009.08.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34957108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0278434309002593</els_id><sourcerecordid>34957108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-AG89iZfWmSRNUzzp4hcseNFzSNsJZum2a9Jd8N-bZT2vp4F3nncGHsauEQoEVHeroo2h4AB1AbpIyQmboa5EruqyPGUz4JXOpZDinF3EuAKAStXVjOWPZNuvbBNG53vKaDf228mPQ2ZjZofMDzsKkfb7pqf1JTtzto909Tfn7PP56WPxmi_fX94WD8vcSiyn3EluEdtaikZ2wK3VwgqLwBVwSG8JOFcdWtdxbRunVQmOk22wUzU4q8Sc3Rzupr_fW4qTWfvYUt_bgcZtNELWZYWg_wV5ghSWmMDboyBWIimRUsuE4gFtwxhjIGc2wa9t-DEIZi_brEySbfayDWiTktS5P3QoWdl5Cia2noaWOh-onUw3-iPtX0bkhWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730074484</pqid></control><display><type>article</type><title>Beach profile evolution as an inverse problem</title><source>Elsevier ScienceDirect Journals</source><creator>Karunarathna, Harshinie ; Reeve, Dominic E. ; Spivack, Mark</creator><creatorcontrib>Karunarathna, Harshinie ; Reeve, Dominic E. ; Spivack, Mark</creatorcontrib><description>Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.</description><identifier>ISSN: 0278-4343</identifier><identifier>EISSN: 1873-6955</identifier><identifier>DOI: 10.1016/j.csr.2009.08.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beach profiles ; Beaches ; Coastal morphology ; Continental shelves ; Diffusion coefficient ; Evolution ; Inverse ; Inverse method ; Marine ; Mathematical analysis ; Mathematical models ; Source function</subject><ispartof>Continental shelf research, 2009-10, Vol.29 (18), p.2234-2239</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</citedby><cites>FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0278434309002593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Karunarathna, Harshinie</creatorcontrib><creatorcontrib>Reeve, Dominic E.</creatorcontrib><creatorcontrib>Spivack, Mark</creatorcontrib><title>Beach profile evolution as an inverse problem</title><title>Continental shelf research</title><description>Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.</description><subject>Beach profiles</subject><subject>Beaches</subject><subject>Coastal morphology</subject><subject>Continental shelves</subject><subject>Diffusion coefficient</subject><subject>Evolution</subject><subject>Inverse</subject><subject>Inverse method</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Source function</subject><issn>0278-4343</issn><issn>1873-6955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-AG89iZfWmSRNUzzp4hcseNFzSNsJZum2a9Jd8N-bZT2vp4F3nncGHsauEQoEVHeroo2h4AB1AbpIyQmboa5EruqyPGUz4JXOpZDinF3EuAKAStXVjOWPZNuvbBNG53vKaDf228mPQ2ZjZofMDzsKkfb7pqf1JTtzto909Tfn7PP56WPxmi_fX94WD8vcSiyn3EluEdtaikZ2wK3VwgqLwBVwSG8JOFcdWtdxbRunVQmOk22wUzU4q8Sc3Rzupr_fW4qTWfvYUt_bgcZtNELWZYWg_wV5ghSWmMDboyBWIimRUsuE4gFtwxhjIGc2wa9t-DEIZi_brEySbfayDWiTktS5P3QoWdl5Cia2noaWOh-onUw3-iPtX0bkhWw</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Karunarathna, Harshinie</creator><creator>Reeve, Dominic E.</creator><creator>Spivack, Mark</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20091015</creationdate><title>Beach profile evolution as an inverse problem</title><author>Karunarathna, Harshinie ; Reeve, Dominic E. ; Spivack, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-f42a11c943b4d02aa83a3a1026020697e0226d1afd28abf8650f2eab1d690fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Beach profiles</topic><topic>Beaches</topic><topic>Coastal morphology</topic><topic>Continental shelves</topic><topic>Diffusion coefficient</topic><topic>Evolution</topic><topic>Inverse</topic><topic>Inverse method</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Source function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karunarathna, Harshinie</creatorcontrib><creatorcontrib>Reeve, Dominic E.</creatorcontrib><creatorcontrib>Spivack, Mark</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Continental shelf research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karunarathna, Harshinie</au><au>Reeve, Dominic E.</au><au>Spivack, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beach profile evolution as an inverse problem</atitle><jtitle>Continental shelf research</jtitle><date>2009-10-15</date><risdate>2009</risdate><volume>29</volume><issue>18</issue><spage>2234</spage><epage>2239</epage><pages>2234-2239</pages><issn>0278-4343</issn><eissn>1873-6955</eissn><abstract>Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary conditions estimated from previous experience or other forecasts. Here, we use observations of beach profiles to solve a beach profile evolution equation in an inverse manner to determine model parameters and source function. The data used to demonstrate the method are from Christchurch Bay in Dorset, UK. It was found that there is a significant contribution from diffusive processes to the morphodynamic evolution of the beach profiles and that the development and disappearance of near-shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the source function in the governing equation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csr.2009.08.016</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-4343 |
ispartof | Continental shelf research, 2009-10, Vol.29 (18), p.2234-2239 |
issn | 0278-4343 1873-6955 |
language | eng |
recordid | cdi_proquest_miscellaneous_34957108 |
source | Elsevier ScienceDirect Journals |
subjects | Beach profiles Beaches Coastal morphology Continental shelves Diffusion coefficient Evolution Inverse Inverse method Marine Mathematical analysis Mathematical models Source function |
title | Beach profile evolution as an inverse problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beach%20profile%20evolution%20as%20an%20inverse%20problem&rft.jtitle=Continental%20shelf%20research&rft.au=Karunarathna,%20Harshinie&rft.date=2009-10-15&rft.volume=29&rft.issue=18&rft.spage=2234&rft.epage=2239&rft.pages=2234-2239&rft.issn=0278-4343&rft.eissn=1873-6955&rft_id=info:doi/10.1016/j.csr.2009.08.016&rft_dat=%3Cproquest_cross%3E34957108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730074484&rft_id=info:pmid/&rft_els_id=S0278434309002593&rfr_iscdi=true |