Treated water quality assurance and description of distribution networks by multivariate chemometrics
Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH),...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2009-10, Vol.43 (18), p.4676-4684 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4684 |
---|---|
container_issue | 18 |
container_start_page | 4676 |
container_title | Water research (Oxford) |
container_volume | 43 |
creator | Smeti, E.M. Thanasoulias, N.C. Lytras, E.S. Tzoumerkas, P.C. Golfinopoulos, S.K. |
description | Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl
−), residual chlorine (free Cl), calcium (Ca
2+) and magnesium (Mg
2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl
−, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified. |
doi_str_mv | 10.1016/j.watres.2009.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34946324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135409004874</els_id><sourcerecordid>1730073741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</originalsourceid><addsrcrecordid>eNqN0ktv1DAQB_AIgei28A0Q5ELFJWH8SOxckFDFS6rEgfZs-TEGL3ls7aTVfnu8zQpupSfL0s8zY_2nKF4RqAmQ9v22vtNzxFRTgK4GUQNlT4oNkaKrKOfyabEB4KwirOEnxWlKWwCglHXPixPStYKLttkUeBVRz-jKXAxjebPoPsz7Uqe0RD1aLPXoSofJxrCbwzSWky9dSHMMZrm_jzjfTfF3Ks2-HJZ-Drc6hlyrtL9wmAbM0qYXxTOv-4Qvj-dZcf3509XF1-ry-5dvFx8vK9sIPldUSyqN5VxY6VvvG06dE41xQnppQWBDpaWi9YZbbXxrjXEeRWuo0Y2njp0V52vdXZxuFkyzGkKy2Pd6xGlJivGOt4zy_0JKQDaCskdB4AAZvnsQEsEAJGlzAo-igglOMuUrtXFKKaJXuxgGHfeKgDqsgdqqdQ3UYQ0UCAX3U78-dljMgO7fo2PuGbw9Ap2s7v0h65D-OkpBNEQcfvVmdV5PSv-M2Vz_oEBYbt2JhsksPqwCc663AaNKNmDeHBci2lm5KTw86x8VK93k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730073741</pqid></control><display><type>article</type><title>Treated water quality assurance and description of distribution networks by multivariate chemometrics</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Smeti, E.M. ; Thanasoulias, N.C. ; Lytras, E.S. ; Tzoumerkas, P.C. ; Golfinopoulos, S.K.</creator><creatorcontrib>Smeti, E.M. ; Thanasoulias, N.C. ; Lytras, E.S. ; Tzoumerkas, P.C. ; Golfinopoulos, S.K.</creatorcontrib><description>Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl
−), residual chlorine (free Cl), calcium (Ca
2+) and magnesium (Mg
2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl
−, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2009.07.023</identifier><identifier>PMID: 19674765</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; alkalinity ; Aluminum ; Aluminum - analysis ; Applied sciences ; calcium ; Calcium - analysis ; chlorides ; Chlorides - analysis ; chlorine ; Chlorine - analysis ; Classification ; Classification and regression trees ; Discriminant Analysis ; drinking water ; Electric Conductivity ; electrical conductivity ; Exact sciences and technology ; Fresh Water - analysis ; Fresh Water - chemistry ; Greece ; Hydrogen-Ion Concentration ; hydrologic models ; Magnesium ; Magnesium - analysis ; Mathematical models ; model validation ; Multivariate Analysis ; Multivariate chemometrics ; Networks ; Other industrial wastes. Sewage sludge ; Pollution ; prediction ; Principal Component Analysis ; Quality Control ; regression analysis ; Sewage - analysis ; Sewage - chemistry ; Tanks ; Training ; Wastes ; water analysis ; water hardness ; Water Pollutants, Chemical - analysis ; Water Purification - methods ; Water quality ; Water Supply - analysis ; Water Supply - standards ; water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2009-10, Vol.43 (18), p.4676-4684</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</citedby><cites>FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2009.07.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22075170$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19674765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smeti, E.M.</creatorcontrib><creatorcontrib>Thanasoulias, N.C.</creatorcontrib><creatorcontrib>Lytras, E.S.</creatorcontrib><creatorcontrib>Tzoumerkas, P.C.</creatorcontrib><creatorcontrib>Golfinopoulos, S.K.</creatorcontrib><title>Treated water quality assurance and description of distribution networks by multivariate chemometrics</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl
−), residual chlorine (free Cl), calcium (Ca
2+) and magnesium (Mg
2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl
−, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.</description><subject>Algorithms</subject><subject>alkalinity</subject><subject>Aluminum</subject><subject>Aluminum - analysis</subject><subject>Applied sciences</subject><subject>calcium</subject><subject>Calcium - analysis</subject><subject>chlorides</subject><subject>Chlorides - analysis</subject><subject>chlorine</subject><subject>Chlorine - analysis</subject><subject>Classification</subject><subject>Classification and regression trees</subject><subject>Discriminant Analysis</subject><subject>drinking water</subject><subject>Electric Conductivity</subject><subject>electrical conductivity</subject><subject>Exact sciences and technology</subject><subject>Fresh Water - analysis</subject><subject>Fresh Water - chemistry</subject><subject>Greece</subject><subject>Hydrogen-Ion Concentration</subject><subject>hydrologic models</subject><subject>Magnesium</subject><subject>Magnesium - analysis</subject><subject>Mathematical models</subject><subject>model validation</subject><subject>Multivariate Analysis</subject><subject>Multivariate chemometrics</subject><subject>Networks</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Pollution</subject><subject>prediction</subject><subject>Principal Component Analysis</subject><subject>Quality Control</subject><subject>regression analysis</subject><subject>Sewage - analysis</subject><subject>Sewage - chemistry</subject><subject>Tanks</subject><subject>Training</subject><subject>Wastes</subject><subject>water analysis</subject><subject>water hardness</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Purification - methods</subject><subject>Water quality</subject><subject>Water Supply - analysis</subject><subject>Water Supply - standards</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ktv1DAQB_AIgei28A0Q5ELFJWH8SOxckFDFS6rEgfZs-TEGL3ls7aTVfnu8zQpupSfL0s8zY_2nKF4RqAmQ9v22vtNzxFRTgK4GUQNlT4oNkaKrKOfyabEB4KwirOEnxWlKWwCglHXPixPStYKLttkUeBVRz-jKXAxjebPoPsz7Uqe0RD1aLPXoSofJxrCbwzSWky9dSHMMZrm_jzjfTfF3Ks2-HJZ-Drc6hlyrtL9wmAbM0qYXxTOv-4Qvj-dZcf3509XF1-ry-5dvFx8vK9sIPldUSyqN5VxY6VvvG06dE41xQnppQWBDpaWi9YZbbXxrjXEeRWuo0Y2njp0V52vdXZxuFkyzGkKy2Pd6xGlJivGOt4zy_0JKQDaCskdB4AAZvnsQEsEAJGlzAo-igglOMuUrtXFKKaJXuxgGHfeKgDqsgdqqdQ3UYQ0UCAX3U78-dljMgO7fo2PuGbw9Ap2s7v0h65D-OkpBNEQcfvVmdV5PSv-M2Vz_oEBYbt2JhsksPqwCc663AaNKNmDeHBci2lm5KTw86x8VK93k</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Smeti, E.M.</creator><creator>Thanasoulias, N.C.</creator><creator>Lytras, E.S.</creator><creator>Tzoumerkas, P.C.</creator><creator>Golfinopoulos, S.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20091001</creationdate><title>Treated water quality assurance and description of distribution networks by multivariate chemometrics</title><author>Smeti, E.M. ; Thanasoulias, N.C. ; Lytras, E.S. ; Tzoumerkas, P.C. ; Golfinopoulos, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>alkalinity</topic><topic>Aluminum</topic><topic>Aluminum - analysis</topic><topic>Applied sciences</topic><topic>calcium</topic><topic>Calcium - analysis</topic><topic>chlorides</topic><topic>Chlorides - analysis</topic><topic>chlorine</topic><topic>Chlorine - analysis</topic><topic>Classification</topic><topic>Classification and regression trees</topic><topic>Discriminant Analysis</topic><topic>drinking water</topic><topic>Electric Conductivity</topic><topic>electrical conductivity</topic><topic>Exact sciences and technology</topic><topic>Fresh Water - analysis</topic><topic>Fresh Water - chemistry</topic><topic>Greece</topic><topic>Hydrogen-Ion Concentration</topic><topic>hydrologic models</topic><topic>Magnesium</topic><topic>Magnesium - analysis</topic><topic>Mathematical models</topic><topic>model validation</topic><topic>Multivariate Analysis</topic><topic>Multivariate chemometrics</topic><topic>Networks</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Pollution</topic><topic>prediction</topic><topic>Principal Component Analysis</topic><topic>Quality Control</topic><topic>regression analysis</topic><topic>Sewage - analysis</topic><topic>Sewage - chemistry</topic><topic>Tanks</topic><topic>Training</topic><topic>Wastes</topic><topic>water analysis</topic><topic>water hardness</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Purification - methods</topic><topic>Water quality</topic><topic>Water Supply - analysis</topic><topic>Water Supply - standards</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smeti, E.M.</creatorcontrib><creatorcontrib>Thanasoulias, N.C.</creatorcontrib><creatorcontrib>Lytras, E.S.</creatorcontrib><creatorcontrib>Tzoumerkas, P.C.</creatorcontrib><creatorcontrib>Golfinopoulos, S.K.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smeti, E.M.</au><au>Thanasoulias, N.C.</au><au>Lytras, E.S.</au><au>Tzoumerkas, P.C.</au><au>Golfinopoulos, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treated water quality assurance and description of distribution networks by multivariate chemometrics</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>43</volume><issue>18</issue><spage>4676</spage><epage>4684</epage><pages>4676-4684</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl
−), residual chlorine (free Cl), calcium (Ca
2+) and magnesium (Mg
2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl
−, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19674765</pmid><doi>10.1016/j.watres.2009.07.023</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2009-10, Vol.43 (18), p.4676-4684 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_34946324 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms alkalinity Aluminum Aluminum - analysis Applied sciences calcium Calcium - analysis chlorides Chlorides - analysis chlorine Chlorine - analysis Classification Classification and regression trees Discriminant Analysis drinking water Electric Conductivity electrical conductivity Exact sciences and technology Fresh Water - analysis Fresh Water - chemistry Greece Hydrogen-Ion Concentration hydrologic models Magnesium Magnesium - analysis Mathematical models model validation Multivariate Analysis Multivariate chemometrics Networks Other industrial wastes. Sewage sludge Pollution prediction Principal Component Analysis Quality Control regression analysis Sewage - analysis Sewage - chemistry Tanks Training Wastes water analysis water hardness Water Pollutants, Chemical - analysis Water Purification - methods Water quality Water Supply - analysis Water Supply - standards water treatment Water treatment and pollution |
title | Treated water quality assurance and description of distribution networks by multivariate chemometrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treated%20water%20quality%20assurance%20and%20description%20of%20distribution%20networks%20by%20multivariate%20chemometrics&rft.jtitle=Water%20research%20(Oxford)&rft.au=Smeti,%20E.M.&rft.date=2009-10-01&rft.volume=43&rft.issue=18&rft.spage=4676&rft.epage=4684&rft.pages=4676-4684&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2009.07.023&rft_dat=%3Cproquest_cross%3E1730073741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730073741&rft_id=info:pmid/19674765&rft_els_id=S0043135409004874&rfr_iscdi=true |