Treated water quality assurance and description of distribution networks by multivariate chemometrics

Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2009-10, Vol.43 (18), p.4676-4684
Hauptverfasser: Smeti, E.M., Thanasoulias, N.C., Lytras, E.S., Tzoumerkas, P.C., Golfinopoulos, S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4684
container_issue 18
container_start_page 4676
container_title Water research (Oxford)
container_volume 43
creator Smeti, E.M.
Thanasoulias, N.C.
Lytras, E.S.
Tzoumerkas, P.C.
Golfinopoulos, S.K.
description Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl −), residual chlorine (free Cl), calcium (Ca 2+) and magnesium (Mg 2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl −, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.
doi_str_mv 10.1016/j.watres.2009.07.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34946324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135409004874</els_id><sourcerecordid>1730073741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</originalsourceid><addsrcrecordid>eNqN0ktv1DAQB_AIgei28A0Q5ELFJWH8SOxckFDFS6rEgfZs-TEGL3ls7aTVfnu8zQpupSfL0s8zY_2nKF4RqAmQ9v22vtNzxFRTgK4GUQNlT4oNkaKrKOfyabEB4KwirOEnxWlKWwCglHXPixPStYKLttkUeBVRz-jKXAxjebPoPsz7Uqe0RD1aLPXoSofJxrCbwzSWky9dSHMMZrm_jzjfTfF3Ks2-HJZ-Drc6hlyrtL9wmAbM0qYXxTOv-4Qvj-dZcf3509XF1-ry-5dvFx8vK9sIPldUSyqN5VxY6VvvG06dE41xQnppQWBDpaWi9YZbbXxrjXEeRWuo0Y2njp0V52vdXZxuFkyzGkKy2Pd6xGlJivGOt4zy_0JKQDaCskdB4AAZvnsQEsEAJGlzAo-igglOMuUrtXFKKaJXuxgGHfeKgDqsgdqqdQ3UYQ0UCAX3U78-dljMgO7fo2PuGbw9Ap2s7v0h65D-OkpBNEQcfvVmdV5PSv-M2Vz_oEBYbt2JhsksPqwCc663AaNKNmDeHBci2lm5KTw86x8VK93k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730073741</pqid></control><display><type>article</type><title>Treated water quality assurance and description of distribution networks by multivariate chemometrics</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Smeti, E.M. ; Thanasoulias, N.C. ; Lytras, E.S. ; Tzoumerkas, P.C. ; Golfinopoulos, S.K.</creator><creatorcontrib>Smeti, E.M. ; Thanasoulias, N.C. ; Lytras, E.S. ; Tzoumerkas, P.C. ; Golfinopoulos, S.K.</creatorcontrib><description>Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl −), residual chlorine (free Cl), calcium (Ca 2+) and magnesium (Mg 2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl −, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&amp;RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2009.07.023</identifier><identifier>PMID: 19674765</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; alkalinity ; Aluminum ; Aluminum - analysis ; Applied sciences ; calcium ; Calcium - analysis ; chlorides ; Chlorides - analysis ; chlorine ; Chlorine - analysis ; Classification ; Classification and regression trees ; Discriminant Analysis ; drinking water ; Electric Conductivity ; electrical conductivity ; Exact sciences and technology ; Fresh Water - analysis ; Fresh Water - chemistry ; Greece ; Hydrogen-Ion Concentration ; hydrologic models ; Magnesium ; Magnesium - analysis ; Mathematical models ; model validation ; Multivariate Analysis ; Multivariate chemometrics ; Networks ; Other industrial wastes. Sewage sludge ; Pollution ; prediction ; Principal Component Analysis ; Quality Control ; regression analysis ; Sewage - analysis ; Sewage - chemistry ; Tanks ; Training ; Wastes ; water analysis ; water hardness ; Water Pollutants, Chemical - analysis ; Water Purification - methods ; Water quality ; Water Supply - analysis ; Water Supply - standards ; water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2009-10, Vol.43 (18), p.4676-4684</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</citedby><cites>FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2009.07.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22075170$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19674765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smeti, E.M.</creatorcontrib><creatorcontrib>Thanasoulias, N.C.</creatorcontrib><creatorcontrib>Lytras, E.S.</creatorcontrib><creatorcontrib>Tzoumerkas, P.C.</creatorcontrib><creatorcontrib>Golfinopoulos, S.K.</creatorcontrib><title>Treated water quality assurance and description of distribution networks by multivariate chemometrics</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl −), residual chlorine (free Cl), calcium (Ca 2+) and magnesium (Mg 2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl −, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&amp;RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.</description><subject>Algorithms</subject><subject>alkalinity</subject><subject>Aluminum</subject><subject>Aluminum - analysis</subject><subject>Applied sciences</subject><subject>calcium</subject><subject>Calcium - analysis</subject><subject>chlorides</subject><subject>Chlorides - analysis</subject><subject>chlorine</subject><subject>Chlorine - analysis</subject><subject>Classification</subject><subject>Classification and regression trees</subject><subject>Discriminant Analysis</subject><subject>drinking water</subject><subject>Electric Conductivity</subject><subject>electrical conductivity</subject><subject>Exact sciences and technology</subject><subject>Fresh Water - analysis</subject><subject>Fresh Water - chemistry</subject><subject>Greece</subject><subject>Hydrogen-Ion Concentration</subject><subject>hydrologic models</subject><subject>Magnesium</subject><subject>Magnesium - analysis</subject><subject>Mathematical models</subject><subject>model validation</subject><subject>Multivariate Analysis</subject><subject>Multivariate chemometrics</subject><subject>Networks</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Pollution</subject><subject>prediction</subject><subject>Principal Component Analysis</subject><subject>Quality Control</subject><subject>regression analysis</subject><subject>Sewage - analysis</subject><subject>Sewage - chemistry</subject><subject>Tanks</subject><subject>Training</subject><subject>Wastes</subject><subject>water analysis</subject><subject>water hardness</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Purification - methods</subject><subject>Water quality</subject><subject>Water Supply - analysis</subject><subject>Water Supply - standards</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ktv1DAQB_AIgei28A0Q5ELFJWH8SOxckFDFS6rEgfZs-TEGL3ls7aTVfnu8zQpupSfL0s8zY_2nKF4RqAmQ9v22vtNzxFRTgK4GUQNlT4oNkaKrKOfyabEB4KwirOEnxWlKWwCglHXPixPStYKLttkUeBVRz-jKXAxjebPoPsz7Uqe0RD1aLPXoSofJxrCbwzSWky9dSHMMZrm_jzjfTfF3Ks2-HJZ-Drc6hlyrtL9wmAbM0qYXxTOv-4Qvj-dZcf3509XF1-ry-5dvFx8vK9sIPldUSyqN5VxY6VvvG06dE41xQnppQWBDpaWi9YZbbXxrjXEeRWuo0Y2njp0V52vdXZxuFkyzGkKy2Pd6xGlJivGOt4zy_0JKQDaCskdB4AAZvnsQEsEAJGlzAo-igglOMuUrtXFKKaJXuxgGHfeKgDqsgdqqdQ3UYQ0UCAX3U78-dljMgO7fo2PuGbw9Ap2s7v0h65D-OkpBNEQcfvVmdV5PSv-M2Vz_oEBYbt2JhsksPqwCc663AaNKNmDeHBci2lm5KTw86x8VK93k</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Smeti, E.M.</creator><creator>Thanasoulias, N.C.</creator><creator>Lytras, E.S.</creator><creator>Tzoumerkas, P.C.</creator><creator>Golfinopoulos, S.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20091001</creationdate><title>Treated water quality assurance and description of distribution networks by multivariate chemometrics</title><author>Smeti, E.M. ; Thanasoulias, N.C. ; Lytras, E.S. ; Tzoumerkas, P.C. ; Golfinopoulos, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-2a828bc447c8f6ff542dd75bd78f8c07e528c276fb4cabf6cbbdfe76b2ba5f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>alkalinity</topic><topic>Aluminum</topic><topic>Aluminum - analysis</topic><topic>Applied sciences</topic><topic>calcium</topic><topic>Calcium - analysis</topic><topic>chlorides</topic><topic>Chlorides - analysis</topic><topic>chlorine</topic><topic>Chlorine - analysis</topic><topic>Classification</topic><topic>Classification and regression trees</topic><topic>Discriminant Analysis</topic><topic>drinking water</topic><topic>Electric Conductivity</topic><topic>electrical conductivity</topic><topic>Exact sciences and technology</topic><topic>Fresh Water - analysis</topic><topic>Fresh Water - chemistry</topic><topic>Greece</topic><topic>Hydrogen-Ion Concentration</topic><topic>hydrologic models</topic><topic>Magnesium</topic><topic>Magnesium - analysis</topic><topic>Mathematical models</topic><topic>model validation</topic><topic>Multivariate Analysis</topic><topic>Multivariate chemometrics</topic><topic>Networks</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Pollution</topic><topic>prediction</topic><topic>Principal Component Analysis</topic><topic>Quality Control</topic><topic>regression analysis</topic><topic>Sewage - analysis</topic><topic>Sewage - chemistry</topic><topic>Tanks</topic><topic>Training</topic><topic>Wastes</topic><topic>water analysis</topic><topic>water hardness</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Purification - methods</topic><topic>Water quality</topic><topic>Water Supply - analysis</topic><topic>Water Supply - standards</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smeti, E.M.</creatorcontrib><creatorcontrib>Thanasoulias, N.C.</creatorcontrib><creatorcontrib>Lytras, E.S.</creatorcontrib><creatorcontrib>Tzoumerkas, P.C.</creatorcontrib><creatorcontrib>Golfinopoulos, S.K.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smeti, E.M.</au><au>Thanasoulias, N.C.</au><au>Lytras, E.S.</au><au>Tzoumerkas, P.C.</au><au>Golfinopoulos, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treated water quality assurance and description of distribution networks by multivariate chemometrics</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>43</volume><issue>18</issue><spage>4676</spage><epage>4684</epage><pages>4676-4684</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Throughout the year 2007, 89 treated water samples from three water treatment plants (WTPs) of the Athens Water Supply and Sewerage Company (EYDAP S.A.) and 180 samples from network tanks (NWTs) were analyzed for electrical conductivity (EC), alkalinity (TA), pH, aluminium (Al), total hardness (TH), chloride (Cl −), residual chlorine (free Cl), calcium (Ca 2+) and magnesium (Mg 2+). The results regarding the WTPs were subjected to a principal component analysis (PCA) with 75% of the total variance being explained. A stepwise linear discriminant analysis (LDA) model constructed from the 89 treated water samples was used to predict class membership of the samples from the NWTs with a view to estimating the propagation of a possible water quality deterioration originating from the WTPs. The model utilized Cl −, Al and EC and yielded a 96% correct classification of the training dataset, whereas the cross-validation yielded a 94% correct classification. Network tank samples were 95% correctly classified with regard to their theoretically expected origin. The stepwise discriminant analysis based on separate covariance matrices of the canonical discriminant functions yielded a 98% correct classification of both the training dataset and the network tank samples. The classification and regression tree (C&amp;RT) algorithm showed that the main parameters used in the discrimination of the WTP samples were EC and Al. The post-hoc classification of the training dataset was 99%, whereas 88% of NWT samples were correctly classified.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19674765</pmid><doi>10.1016/j.watres.2009.07.023</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2009-10, Vol.43 (18), p.4676-4684
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_34946324
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
alkalinity
Aluminum
Aluminum - analysis
Applied sciences
calcium
Calcium - analysis
chlorides
Chlorides - analysis
chlorine
Chlorine - analysis
Classification
Classification and regression trees
Discriminant Analysis
drinking water
Electric Conductivity
electrical conductivity
Exact sciences and technology
Fresh Water - analysis
Fresh Water - chemistry
Greece
Hydrogen-Ion Concentration
hydrologic models
Magnesium
Magnesium - analysis
Mathematical models
model validation
Multivariate Analysis
Multivariate chemometrics
Networks
Other industrial wastes. Sewage sludge
Pollution
prediction
Principal Component Analysis
Quality Control
regression analysis
Sewage - analysis
Sewage - chemistry
Tanks
Training
Wastes
water analysis
water hardness
Water Pollutants, Chemical - analysis
Water Purification - methods
Water quality
Water Supply - analysis
Water Supply - standards
water treatment
Water treatment and pollution
title Treated water quality assurance and description of distribution networks by multivariate chemometrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treated%20water%20quality%20assurance%20and%20description%20of%20distribution%20networks%20by%20multivariate%20chemometrics&rft.jtitle=Water%20research%20(Oxford)&rft.au=Smeti,%20E.M.&rft.date=2009-10-01&rft.volume=43&rft.issue=18&rft.spage=4676&rft.epage=4684&rft.pages=4676-4684&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2009.07.023&rft_dat=%3Cproquest_cross%3E1730073741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730073741&rft_id=info:pmid/19674765&rft_els_id=S0043135409004874&rfr_iscdi=true