Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion

Inorganic polymer cements, or ‘geopolymers’, are now finding use as a replacement for Portland cement in concrete production, and have a complex pore structure which has proven difficult to measure accurately by gas or mercury porosimetry. These materials consist of an alkali aluminosilicate-based g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microporous and mesoporous materials 2009-11, Vol.126 (1), p.32-39
Hauptverfasser: Lloyd, Redmond R., Provis, John L., Smeaton, Kevin J., van Deventer, Jannie S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 32
container_title Microporous and mesoporous materials
container_volume 126
creator Lloyd, Redmond R.
Provis, John L.
Smeaton, Kevin J.
van Deventer, Jannie S.J.
description Inorganic polymer cements, or ‘geopolymers’, are now finding use as a replacement for Portland cement in concrete production, and have a complex pore structure which has proven difficult to measure accurately by gas or mercury porosimetry. These materials consist of an alkali aluminosilicate-based gel binder phase, within which are embedded unreacted precursor (usually coal fly ash and/or blast furnace slag) particles. Impregnation of the inorganic polymer samples with Wood’s metal, a low-melting-point alloy which solidifies at room temperature, and examination by scanning electron microscopy, allows both the size of pores and their physical distribution within the gel to be determined. Pore sizes as small as 10 nm are directly observable in high-resolution imaging. Much of the difficulty in applying standard porosimetry techniques to inorganic polymers may be identified as being related to the presence of numerous ‘ink-bottle’ pores, as well as the very wide distribution of pore diameters (spanning several orders of magnitude). The effect of gel chemistry on pore structure, and in particular the presence of calcium in the inorganic polymer formulation, is also considered.
doi_str_mv 10.1016/j.micromeso.2009.05.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34936749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1387181109002595</els_id><sourcerecordid>34936749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-cca30a5ee2089cd35e7570eb78f0467914e4ddf16523b1287f6f13315496389b3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVoockmz1Bd2ptdybIt-xhCkxYCPbQhRyHLo2QW2dpq7MDe8hp5vT5JtGzItReN-PnmH_gY-yxFKYVsv23LCV2KE1AsKyH6UjRlzk_Yqey0KpTo1Yf8V50uZCflJ3ZGtBVCalnJUxZ-7-yCNvARaUk4rAvGmUfPdzEBcZy5D3tu6bEYLMGYg5ge7IwuA2E_QeIPEIg_Ia024IEY9vw-xvHf8wvxCZZcjfOSVsq95-yjt4Hg4m1u2N319z9XP4rbXzc_ry5vC6d0uxTOWSVsA1CJrnejakA3WsCgOy_qVveyhnocvWybSg2y6rRvvVRKNnXfqq4f1IZ9PfbuUvy7Ai1mQnIQgp0hrmRU3atW52fD9BHMAokSeLNLONm0N1KYg12zNe92zcGuEY3Jed788nbCkrPBJzs7pPf1qhJ13cgqc5dHLluCJ4RkyCHMDkZM4BYzRvzvrVdsu5cj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34936749</pqid></control><display><type>article</type><title>Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lloyd, Redmond R. ; Provis, John L. ; Smeaton, Kevin J. ; van Deventer, Jannie S.J.</creator><creatorcontrib>Lloyd, Redmond R. ; Provis, John L. ; Smeaton, Kevin J. ; van Deventer, Jannie S.J.</creatorcontrib><description>Inorganic polymer cements, or ‘geopolymers’, are now finding use as a replacement for Portland cement in concrete production, and have a complex pore structure which has proven difficult to measure accurately by gas or mercury porosimetry. These materials consist of an alkali aluminosilicate-based gel binder phase, within which are embedded unreacted precursor (usually coal fly ash and/or blast furnace slag) particles. Impregnation of the inorganic polymer samples with Wood’s metal, a low-melting-point alloy which solidifies at room temperature, and examination by scanning electron microscopy, allows both the size of pores and their physical distribution within the gel to be determined. Pore sizes as small as 10 nm are directly observable in high-resolution imaging. Much of the difficulty in applying standard porosimetry techniques to inorganic polymers may be identified as being related to the presence of numerous ‘ink-bottle’ pores, as well as the very wide distribution of pore diameters (spanning several orders of magnitude). The effect of gel chemistry on pore structure, and in particular the presence of calcium in the inorganic polymer formulation, is also considered.</description><identifier>ISSN: 1387-1811</identifier><identifier>EISSN: 1873-3093</identifier><identifier>DOI: 10.1016/j.micromeso.2009.05.016</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Aluminosilicate ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Inorganic polymer ; Nitrogen sorption ; Porosimetry ; Porous materials ; Surface physical chemistry ; Wood’s metal intrusion</subject><ispartof>Microporous and mesoporous materials, 2009-11, Vol.126 (1), p.32-39</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-cca30a5ee2089cd35e7570eb78f0467914e4ddf16523b1287f6f13315496389b3</citedby><cites>FETCH-LOGICAL-c376t-cca30a5ee2089cd35e7570eb78f0467914e4ddf16523b1287f6f13315496389b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.micromeso.2009.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22044512$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, Redmond R.</creatorcontrib><creatorcontrib>Provis, John L.</creatorcontrib><creatorcontrib>Smeaton, Kevin J.</creatorcontrib><creatorcontrib>van Deventer, Jannie S.J.</creatorcontrib><title>Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion</title><title>Microporous and mesoporous materials</title><description>Inorganic polymer cements, or ‘geopolymers’, are now finding use as a replacement for Portland cement in concrete production, and have a complex pore structure which has proven difficult to measure accurately by gas or mercury porosimetry. These materials consist of an alkali aluminosilicate-based gel binder phase, within which are embedded unreacted precursor (usually coal fly ash and/or blast furnace slag) particles. Impregnation of the inorganic polymer samples with Wood’s metal, a low-melting-point alloy which solidifies at room temperature, and examination by scanning electron microscopy, allows both the size of pores and their physical distribution within the gel to be determined. Pore sizes as small as 10 nm are directly observable in high-resolution imaging. Much of the difficulty in applying standard porosimetry techniques to inorganic polymers may be identified as being related to the presence of numerous ‘ink-bottle’ pores, as well as the very wide distribution of pore diameters (spanning several orders of magnitude). The effect of gel chemistry on pore structure, and in particular the presence of calcium in the inorganic polymer formulation, is also considered.</description><subject>Aluminosilicate</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Inorganic polymer</subject><subject>Nitrogen sorption</subject><subject>Porosimetry</subject><subject>Porous materials</subject><subject>Surface physical chemistry</subject><subject>Wood’s metal intrusion</subject><issn>1387-1811</issn><issn>1873-3093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVoockmz1Bd2ptdybIt-xhCkxYCPbQhRyHLo2QW2dpq7MDe8hp5vT5JtGzItReN-PnmH_gY-yxFKYVsv23LCV2KE1AsKyH6UjRlzk_Yqey0KpTo1Yf8V50uZCflJ3ZGtBVCalnJUxZ-7-yCNvARaUk4rAvGmUfPdzEBcZy5D3tu6bEYLMGYg5ge7IwuA2E_QeIPEIg_Ia024IEY9vw-xvHf8wvxCZZcjfOSVsq95-yjt4Hg4m1u2N319z9XP4rbXzc_ry5vC6d0uxTOWSVsA1CJrnejakA3WsCgOy_qVveyhnocvWybSg2y6rRvvVRKNnXfqq4f1IZ9PfbuUvy7Ai1mQnIQgp0hrmRU3atW52fD9BHMAokSeLNLONm0N1KYg12zNe92zcGuEY3Jed788nbCkrPBJzs7pPf1qhJ13cgqc5dHLluCJ4RkyCHMDkZM4BYzRvzvrVdsu5cj</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Lloyd, Redmond R.</creator><creator>Provis, John L.</creator><creator>Smeaton, Kevin J.</creator><creator>van Deventer, Jannie S.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion</title><author>Lloyd, Redmond R. ; Provis, John L. ; Smeaton, Kevin J. ; van Deventer, Jannie S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-cca30a5ee2089cd35e7570eb78f0467914e4ddf16523b1287f6f13315496389b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aluminosilicate</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Inorganic polymer</topic><topic>Nitrogen sorption</topic><topic>Porosimetry</topic><topic>Porous materials</topic><topic>Surface physical chemistry</topic><topic>Wood’s metal intrusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Redmond R.</creatorcontrib><creatorcontrib>Provis, John L.</creatorcontrib><creatorcontrib>Smeaton, Kevin J.</creatorcontrib><creatorcontrib>van Deventer, Jannie S.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microporous and mesoporous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Redmond R.</au><au>Provis, John L.</au><au>Smeaton, Kevin J.</au><au>van Deventer, Jannie S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion</atitle><jtitle>Microporous and mesoporous materials</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>126</volume><issue>1</issue><spage>32</spage><epage>39</epage><pages>32-39</pages><issn>1387-1811</issn><eissn>1873-3093</eissn><abstract>Inorganic polymer cements, or ‘geopolymers’, are now finding use as a replacement for Portland cement in concrete production, and have a complex pore structure which has proven difficult to measure accurately by gas or mercury porosimetry. These materials consist of an alkali aluminosilicate-based gel binder phase, within which are embedded unreacted precursor (usually coal fly ash and/or blast furnace slag) particles. Impregnation of the inorganic polymer samples with Wood’s metal, a low-melting-point alloy which solidifies at room temperature, and examination by scanning electron microscopy, allows both the size of pores and their physical distribution within the gel to be determined. Pore sizes as small as 10 nm are directly observable in high-resolution imaging. Much of the difficulty in applying standard porosimetry techniques to inorganic polymers may be identified as being related to the presence of numerous ‘ink-bottle’ pores, as well as the very wide distribution of pore diameters (spanning several orders of magnitude). The effect of gel chemistry on pore structure, and in particular the presence of calcium in the inorganic polymer formulation, is also considered.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.micromeso.2009.05.016</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-1811
ispartof Microporous and mesoporous materials, 2009-11, Vol.126 (1), p.32-39
issn 1387-1811
1873-3093
language eng
recordid cdi_proquest_miscellaneous_34936749
source ScienceDirect Journals (5 years ago - present)
subjects Aluminosilicate
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Inorganic polymer
Nitrogen sorption
Porosimetry
Porous materials
Surface physical chemistry
Wood’s metal intrusion
title Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20distribution%20of%20pores%20in%20fly%20ash-based%20inorganic%20polymer%20gels%20visualised%20by%20Wood%E2%80%99s%20metal%20intrusion&rft.jtitle=Microporous%20and%20mesoporous%20materials&rft.au=Lloyd,%20Redmond%20R.&rft.date=2009-11-01&rft.volume=126&rft.issue=1&rft.spage=32&rft.epage=39&rft.pages=32-39&rft.issn=1387-1811&rft.eissn=1873-3093&rft_id=info:doi/10.1016/j.micromeso.2009.05.016&rft_dat=%3Cproquest_cross%3E34936749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34936749&rft_id=info:pmid/&rft_els_id=S1387181109002595&rfr_iscdi=true