Stability of homogeneity almost everywhere
We consider approximately h-homogeneous mappings almost everywhere, that is functions F such that the difference F(ax) - h(a)F(x) is in some sense bounded almost everywhere in a product space. We will prove, under some assumptions, that then either we have some kind of boundedness of h and F, or the...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2007-11, Vol.117 (3), p.219-229 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 3 |
container_start_page | 219 |
container_title | Acta mathematica Hungarica |
container_volume | 117 |
creator | Jablonski, W |
description | We consider approximately h-homogeneous mappings almost everywhere, that is functions F such that the difference F(ax) - h(a)F(x) is in some sense bounded almost everywhere in a product space. We will prove, under some assumptions, that then either we have some kind of boundedness of h and F, or there exist a homomorphism [Equation] and a [Equation]-homogeneous function [Equation], which are almost everywhere equal to h and F, respectively. From this result we derive the superstability effect for the multiplicativity almost everywhere. |
doi_str_mv | 10.1007/s10474-007-6092-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34935317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34935317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-4ec7f2be6e096a2a47d4401218f5fefa3d072d1da2755877f111c751513a2f1f3</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoWEd_gLuuXAjR9_LRtEsZdBQGXKjrkGlfnEo7GZOO0n_vlLq698LhLg5j1wh3CGDuE4Iyih8rL6ASvDxhGeqy5KKQ4pRlIGTBtajUObtI6QsAtASVsdu3wW3arh3GPPh8G_rwSTuapuv6kIacfiiOv1uKdMnOvOsSXf3ngn08Pb4vn_n6dfWyfFjzWphi4Ipq48WGCoKqcMIp0ygFKLD02pN3sgEjGmycMFqXxnhErI1GjdIJj14u2M38u4_h-0BpsH2bauo6t6NwSFaqSmqJ5gjiDNYxpBTJ231sexdHi2AnK3a2Yqc6WbGl_APIflRz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34935317</pqid></control><display><type>article</type><title>Stability of homogeneity almost everywhere</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jablonski, W</creator><creatorcontrib>Jablonski, W</creatorcontrib><description>We consider approximately h-homogeneous mappings almost everywhere, that is functions F such that the difference F(ax) - h(a)F(x) is in some sense bounded almost everywhere in a product space. We will prove, under some assumptions, that then either we have some kind of boundedness of h and F, or there exist a homomorphism [Equation] and a [Equation]-homogeneous function [Equation], which are almost everywhere equal to h and F, respectively. From this result we derive the superstability effect for the multiplicativity almost everywhere.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-007-6092-8</identifier><language>eng</language><ispartof>Acta mathematica Hungarica, 2007-11, Vol.117 (3), p.219-229</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-4ec7f2be6e096a2a47d4401218f5fefa3d072d1da2755877f111c751513a2f1f3</citedby><cites>FETCH-LOGICAL-c276t-4ec7f2be6e096a2a47d4401218f5fefa3d072d1da2755877f111c751513a2f1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jablonski, W</creatorcontrib><title>Stability of homogeneity almost everywhere</title><title>Acta mathematica Hungarica</title><description>We consider approximately h-homogeneous mappings almost everywhere, that is functions F such that the difference F(ax) - h(a)F(x) is in some sense bounded almost everywhere in a product space. We will prove, under some assumptions, that then either we have some kind of boundedness of h and F, or there exist a homomorphism [Equation] and a [Equation]-homogeneous function [Equation], which are almost everywhere equal to h and F, respectively. From this result we derive the superstability effect for the multiplicativity almost everywhere.</description><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoWEd_gLuuXAjR9_LRtEsZdBQGXKjrkGlfnEo7GZOO0n_vlLq698LhLg5j1wh3CGDuE4Iyih8rL6ASvDxhGeqy5KKQ4pRlIGTBtajUObtI6QsAtASVsdu3wW3arh3GPPh8G_rwSTuapuv6kIacfiiOv1uKdMnOvOsSXf3ngn08Pb4vn_n6dfWyfFjzWphi4Ipq48WGCoKqcMIp0ygFKLD02pN3sgEjGmycMFqXxnhErI1GjdIJj14u2M38u4_h-0BpsH2bauo6t6NwSFaqSmqJ5gjiDNYxpBTJ231sexdHi2AnK3a2Yqc6WbGl_APIflRz</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Jablonski, W</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200711</creationdate><title>Stability of homogeneity almost everywhere</title><author>Jablonski, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-4ec7f2be6e096a2a47d4401218f5fefa3d072d1da2755877f111c751513a2f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jablonski, W</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jablonski, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of homogeneity almost everywhere</atitle><jtitle>Acta mathematica Hungarica</jtitle><date>2007-11</date><risdate>2007</risdate><volume>117</volume><issue>3</issue><spage>219</spage><epage>229</epage><pages>219-229</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We consider approximately h-homogeneous mappings almost everywhere, that is functions F such that the difference F(ax) - h(a)F(x) is in some sense bounded almost everywhere in a product space. We will prove, under some assumptions, that then either we have some kind of boundedness of h and F, or there exist a homomorphism [Equation] and a [Equation]-homogeneous function [Equation], which are almost everywhere equal to h and F, respectively. From this result we derive the superstability effect for the multiplicativity almost everywhere.</abstract><doi>10.1007/s10474-007-6092-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5294 |
ispartof | Acta mathematica Hungarica, 2007-11, Vol.117 (3), p.219-229 |
issn | 0236-5294 1588-2632 |
language | eng |
recordid | cdi_proquest_miscellaneous_34935317 |
source | SpringerLink Journals - AutoHoldings |
title | Stability of homogeneity almost everywhere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20homogeneity%20almost%20everywhere&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Jablonski,%20W&rft.date=2007-11&rft.volume=117&rft.issue=3&rft.spage=219&rft.epage=229&rft.pages=219-229&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-007-6092-8&rft_dat=%3Cproquest_cross%3E34935317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34935317&rft_id=info:pmid/&rfr_iscdi=true |