Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks

The Arctic is poorly described and understood compared to the North Sea and other boreal areas. We need to learn how knowledge obtained at boreal conditions may be applied at Arctic conditions. Increasing activity of the hydrocarbon industry may cause exposure stress from discharges. Within a joint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Deep-sea research. Part II, Topical studies in oceanography Topical studies in oceanography, 2009-10, Vol.56 (21), p.2037-2043
Hauptverfasser: Skadsheim, Arnfinn, Sanni, Steinar, Pinturier, Laurence, Moltu, Ulf-Einar, Buffagni, Melania, Bracco, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2043
container_issue 21
container_start_page 2037
container_title Deep-sea research. Part II, Topical studies in oceanography
container_volume 56
creator Skadsheim, Arnfinn
Sanni, Steinar
Pinturier, Laurence
Moltu, Ulf-Einar
Buffagni, Melania
Bracco, Laura
description The Arctic is poorly described and understood compared to the North Sea and other boreal areas. We need to learn how knowledge obtained at boreal conditions may be applied at Arctic conditions. Increasing activity of the hydrocarbon industry may cause exposure stress from discharges. Within a joint industry research programme (Biosea) we studied how responses in fish from oil exposure may differ at North Sea boreal and Barents Sea Arctic conditions. Hydrocarbon uptake, metabolites, and enzymatic and genotoxic biomarker type of effect responses were measured in cod ( Gadus morhua L.). Hydrocarbon metabolites remain longer in fish bile than original hydrocarbons, which are eliminated fast from tissues. The metabolites may be measured to background concentrations. They describe exposure and they constitute a link to other effects. Body burden, biliary polyaromatic hydrocarbon (PAH) metabolite concentration, and quantities of Cytochrome P-450 1A (CYP1A) and DNA adducts increased with oil in water concentration. The extent of biomarker expression was lower for some biomarkers and elimination was slower at the lowest temperature. The results show that several factors have to be accounted for if warm-water biomarker data are to be applied in cold water.
doi_str_mv 10.1016/j.dsr2.2008.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34934210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967064508003925</els_id><sourcerecordid>20818965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d0bf504035cc9217479d4074290979ed883b3fa367453b48e4f410fc5a8bcce23</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMoOK5-AU99Ei_dVv50dwJelsVVYcGLnkM6qZ7N2JOMqayw396M43k9FfX4vUdRj7G3HAYOfPpwGAIVMQgAPXA-AFfP2I7r2fTAAZ6zHZhp7mFS40v2iugAAFJOZse2ayIkimnfuRS6Y06x5nJet-zd9lfcctr3xaU99rUNOuVSMXT3j6E0piw5UeeoO-WKqcZmolpaZi7U1dytke6bkv1Pes1erG4jfPNvXrEft5--33zp7759_npzfdd7acbaB1jWERTI0Xsj-KxmExTMShgws8GgtVzk6uQ0q1EuSqNaFYfVj04v3qOQV-zdJfdU8q8HpGqPkTxum0uYH8hKZaQSHP4LCtBcm2ls4PsnQT6307QUo2youKC-ZKKCqz2VeHTl0XKw57LswZ7LsueyLOe2ldVMHy8mbG_5HbFY8hGTxxAL-mpDjk_Z_wAH2J5b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709783253</pqid></control><display><type>article</type><title>Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Skadsheim, Arnfinn ; Sanni, Steinar ; Pinturier, Laurence ; Moltu, Ulf-Einar ; Buffagni, Melania ; Bracco, Laura</creator><creatorcontrib>Skadsheim, Arnfinn ; Sanni, Steinar ; Pinturier, Laurence ; Moltu, Ulf-Einar ; Buffagni, Melania ; Bracco, Laura</creatorcontrib><description>The Arctic is poorly described and understood compared to the North Sea and other boreal areas. We need to learn how knowledge obtained at boreal conditions may be applied at Arctic conditions. Increasing activity of the hydrocarbon industry may cause exposure stress from discharges. Within a joint industry research programme (Biosea) we studied how responses in fish from oil exposure may differ at North Sea boreal and Barents Sea Arctic conditions. Hydrocarbon uptake, metabolites, and enzymatic and genotoxic biomarker type of effect responses were measured in cod ( Gadus morhua L.). Hydrocarbon metabolites remain longer in fish bile than original hydrocarbons, which are eliminated fast from tissues. The metabolites may be measured to background concentrations. They describe exposure and they constitute a link to other effects. Body burden, biliary polyaromatic hydrocarbon (PAH) metabolite concentration, and quantities of Cytochrome P-450 1A (CYP1A) and DNA adducts increased with oil in water concentration. The extent of biomarker expression was lower for some biomarkers and elimination was slower at the lowest temperature. The results show that several factors have to be accounted for if warm-water biomarker data are to be applied in cold water.</description><identifier>ISSN: 0967-0645</identifier><identifier>EISSN: 1879-0100</identifier><identifier>DOI: 10.1016/j.dsr2.2008.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aromatic hydrocarbons ; Barents Sea ; Deep sea ; Fish ; Gadus morhua ; Hydrocarbons ; Latitudinal knowledge transfer ; Marine ; Metabolites ; Monitoring ; North Sea ; Oceanography ; Oil ; Polyaromatic hydrocarbons ; Risk and impact estimation</subject><ispartof>Deep-sea research. Part II, Topical studies in oceanography, 2009-10, Vol.56 (21), p.2037-2043</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d0bf504035cc9217479d4074290979ed883b3fa367453b48e4f410fc5a8bcce23</citedby><cites>FETCH-LOGICAL-c395t-d0bf504035cc9217479d4074290979ed883b3fa367453b48e4f410fc5a8bcce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dsr2.2008.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Skadsheim, Arnfinn</creatorcontrib><creatorcontrib>Sanni, Steinar</creatorcontrib><creatorcontrib>Pinturier, Laurence</creatorcontrib><creatorcontrib>Moltu, Ulf-Einar</creatorcontrib><creatorcontrib>Buffagni, Melania</creatorcontrib><creatorcontrib>Bracco, Laura</creatorcontrib><title>Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks</title><title>Deep-sea research. Part II, Topical studies in oceanography</title><description>The Arctic is poorly described and understood compared to the North Sea and other boreal areas. We need to learn how knowledge obtained at boreal conditions may be applied at Arctic conditions. Increasing activity of the hydrocarbon industry may cause exposure stress from discharges. Within a joint industry research programme (Biosea) we studied how responses in fish from oil exposure may differ at North Sea boreal and Barents Sea Arctic conditions. Hydrocarbon uptake, metabolites, and enzymatic and genotoxic biomarker type of effect responses were measured in cod ( Gadus morhua L.). Hydrocarbon metabolites remain longer in fish bile than original hydrocarbons, which are eliminated fast from tissues. The metabolites may be measured to background concentrations. They describe exposure and they constitute a link to other effects. Body burden, biliary polyaromatic hydrocarbon (PAH) metabolite concentration, and quantities of Cytochrome P-450 1A (CYP1A) and DNA adducts increased with oil in water concentration. The extent of biomarker expression was lower for some biomarkers and elimination was slower at the lowest temperature. The results show that several factors have to be accounted for if warm-water biomarker data are to be applied in cold water.</description><subject>Aromatic hydrocarbons</subject><subject>Barents Sea</subject><subject>Deep sea</subject><subject>Fish</subject><subject>Gadus morhua</subject><subject>Hydrocarbons</subject><subject>Latitudinal knowledge transfer</subject><subject>Marine</subject><subject>Metabolites</subject><subject>Monitoring</subject><subject>North Sea</subject><subject>Oceanography</subject><subject>Oil</subject><subject>Polyaromatic hydrocarbons</subject><subject>Risk and impact estimation</subject><issn>0967-0645</issn><issn>1879-0100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxYMoOK5-AU99Ei_dVv50dwJelsVVYcGLnkM6qZ7N2JOMqayw396M43k9FfX4vUdRj7G3HAYOfPpwGAIVMQgAPXA-AFfP2I7r2fTAAZ6zHZhp7mFS40v2iugAAFJOZse2ayIkimnfuRS6Y06x5nJet-zd9lfcctr3xaU99rUNOuVSMXT3j6E0piw5UeeoO-WKqcZmolpaZi7U1dytke6bkv1Pes1erG4jfPNvXrEft5--33zp7759_npzfdd7acbaB1jWERTI0Xsj-KxmExTMShgws8GgtVzk6uQ0q1EuSqNaFYfVj04v3qOQV-zdJfdU8q8HpGqPkTxum0uYH8hKZaQSHP4LCtBcm2ls4PsnQT6307QUo2youKC-ZKKCqz2VeHTl0XKw57LswZ7LsueyLOe2ldVMHy8mbG_5HbFY8hGTxxAL-mpDjk_Z_wAH2J5b</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Skadsheim, Arnfinn</creator><creator>Sanni, Steinar</creator><creator>Pinturier, Laurence</creator><creator>Moltu, Ulf-Einar</creator><creator>Buffagni, Melania</creator><creator>Bracco, Laura</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20091001</creationdate><title>Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks</title><author>Skadsheim, Arnfinn ; Sanni, Steinar ; Pinturier, Laurence ; Moltu, Ulf-Einar ; Buffagni, Melania ; Bracco, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d0bf504035cc9217479d4074290979ed883b3fa367453b48e4f410fc5a8bcce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aromatic hydrocarbons</topic><topic>Barents Sea</topic><topic>Deep sea</topic><topic>Fish</topic><topic>Gadus morhua</topic><topic>Hydrocarbons</topic><topic>Latitudinal knowledge transfer</topic><topic>Marine</topic><topic>Metabolites</topic><topic>Monitoring</topic><topic>North Sea</topic><topic>Oceanography</topic><topic>Oil</topic><topic>Polyaromatic hydrocarbons</topic><topic>Risk and impact estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skadsheim, Arnfinn</creatorcontrib><creatorcontrib>Sanni, Steinar</creatorcontrib><creatorcontrib>Pinturier, Laurence</creatorcontrib><creatorcontrib>Moltu, Ulf-Einar</creatorcontrib><creatorcontrib>Buffagni, Melania</creatorcontrib><creatorcontrib>Bracco, Laura</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Deep-sea research. Part II, Topical studies in oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skadsheim, Arnfinn</au><au>Sanni, Steinar</au><au>Pinturier, Laurence</au><au>Moltu, Ulf-Einar</au><au>Buffagni, Melania</au><au>Bracco, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks</atitle><jtitle>Deep-sea research. Part II, Topical studies in oceanography</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>56</volume><issue>21</issue><spage>2037</spage><epage>2043</epage><pages>2037-2043</pages><issn>0967-0645</issn><eissn>1879-0100</eissn><abstract>The Arctic is poorly described and understood compared to the North Sea and other boreal areas. We need to learn how knowledge obtained at boreal conditions may be applied at Arctic conditions. Increasing activity of the hydrocarbon industry may cause exposure stress from discharges. Within a joint industry research programme (Biosea) we studied how responses in fish from oil exposure may differ at North Sea boreal and Barents Sea Arctic conditions. Hydrocarbon uptake, metabolites, and enzymatic and genotoxic biomarker type of effect responses were measured in cod ( Gadus morhua L.). Hydrocarbon metabolites remain longer in fish bile than original hydrocarbons, which are eliminated fast from tissues. The metabolites may be measured to background concentrations. They describe exposure and they constitute a link to other effects. Body burden, biliary polyaromatic hydrocarbon (PAH) metabolite concentration, and quantities of Cytochrome P-450 1A (CYP1A) and DNA adducts increased with oil in water concentration. The extent of biomarker expression was lower for some biomarkers and elimination was slower at the lowest temperature. The results show that several factors have to be accounted for if warm-water biomarker data are to be applied in cold water.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.dsr2.2008.11.014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0645
ispartof Deep-sea research. Part II, Topical studies in oceanography, 2009-10, Vol.56 (21), p.2037-2043
issn 0967-0645
1879-0100
language eng
recordid cdi_proquest_miscellaneous_34934210
source Elsevier ScienceDirect Journals Complete
subjects Aromatic hydrocarbons
Barents Sea
Deep sea
Fish
Gadus morhua
Hydrocarbons
Latitudinal knowledge transfer
Marine
Metabolites
Monitoring
North Sea
Oceanography
Oil
Polyaromatic hydrocarbons
Risk and impact estimation
title Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20and%20monitoring%20local%20and%20long-range-transported%20hydrocarbons%20as%20potential%20stressors%20to%20fish%20stocks&rft.jtitle=Deep-sea%20research.%20Part%20II,%20Topical%20studies%20in%20oceanography&rft.au=Skadsheim,%20Arnfinn&rft.date=2009-10-01&rft.volume=56&rft.issue=21&rft.spage=2037&rft.epage=2043&rft.pages=2037-2043&rft.issn=0967-0645&rft.eissn=1879-0100&rft_id=info:doi/10.1016/j.dsr2.2008.11.014&rft_dat=%3Cproquest_cross%3E20818965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709783253&rft_id=info:pmid/&rft_els_id=S0967064508003925&rfr_iscdi=true