Stability radius of an efficient solution of a vector problem of integer linear programming in the Goelder metric

A vector (multicriterion) problem of integer linear programming is considered on a finite set of feasible solutions. A metric l(p), 1 , p , !, is defined on the parameter space of the problem. A formula of the maximum permissible level of perturbations is obtained for the parameters that preserve th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2006-07, Vol.42 (4), p.609-614
Hauptverfasser: Emelichev, V A, Kuzmin, K G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 4
container_start_page 609
container_title Cybernetics and systems analysis
container_volume 42
creator Emelichev, V A
Kuzmin, K G
description A vector (multicriterion) problem of integer linear programming is considered on a finite set of feasible solutions. A metric l(p), 1 , p , !, is defined on the parameter space of the problem. A formula of the maximum permissible level of perturbations is obtained for the parameters that preserve the efficiency (Pareto optimality) of a given solution. Necessary and sufficient conditions of two types of stability of the problem are obtained as corollaries.
doi_str_mv 10.1007/s10559-006-0097-0
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_34933834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34933834</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_349338343</originalsourceid><addsrcrecordid>eNqNi71uwkAQhK8gEiTwAHRbpXOy1oGNa0SSPunRYdZm0f3A7ToSbx8H5QFSjEaa7xtjliW-lIj1q5S4XjcFYjWmqQucmFmJFRZom2pqHkXOiGix3szM9VPdgT3rDbI78iCQOnARqOu4ZYoKkvygnOIdwDe1mjJccjp4Cr8bR6WeMniO5O6kzy4Ejv2IQE8E74n8cTQCaeZ2bh4654UWf_1knt92X9uPYnxeBxLdB5aWvHeR0iB7u2qs3diV_bf4A98fU0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34933834</pqid></control><display><type>article</type><title>Stability radius of an efficient solution of a vector problem of integer linear programming in the Goelder metric</title><source>SpringerLink Journals</source><creator>Emelichev, V A ; Kuzmin, K G</creator><creatorcontrib>Emelichev, V A ; Kuzmin, K G</creatorcontrib><description>A vector (multicriterion) problem of integer linear programming is considered on a finite set of feasible solutions. A metric l(p), 1 , p , !, is defined on the parameter space of the problem. A formula of the maximum permissible level of perturbations is obtained for the parameters that preserve the efficiency (Pareto optimality) of a given solution. Necessary and sufficient conditions of two types of stability of the problem are obtained as corollaries.</description><identifier>ISSN: 1060-0396</identifier><identifier>DOI: 10.1007/s10559-006-0097-0</identifier><language>eng</language><ispartof>Cybernetics and systems analysis, 2006-07, Vol.42 (4), p.609-614</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Emelichev, V A</creatorcontrib><creatorcontrib>Kuzmin, K G</creatorcontrib><title>Stability radius of an efficient solution of a vector problem of integer linear programming in the Goelder metric</title><title>Cybernetics and systems analysis</title><description>A vector (multicriterion) problem of integer linear programming is considered on a finite set of feasible solutions. A metric l(p), 1 , p , !, is defined on the parameter space of the problem. A formula of the maximum permissible level of perturbations is obtained for the parameters that preserve the efficiency (Pareto optimality) of a given solution. Necessary and sufficient conditions of two types of stability of the problem are obtained as corollaries.</description><issn>1060-0396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNi71uwkAQhK8gEiTwAHRbpXOy1oGNa0SSPunRYdZm0f3A7ToSbx8H5QFSjEaa7xtjliW-lIj1q5S4XjcFYjWmqQucmFmJFRZom2pqHkXOiGix3szM9VPdgT3rDbI78iCQOnARqOu4ZYoKkvygnOIdwDe1mjJccjp4Cr8bR6WeMniO5O6kzy4Ejv2IQE8E74n8cTQCaeZ2bh4654UWf_1knt92X9uPYnxeBxLdB5aWvHeR0iB7u2qs3diV_bf4A98fU0w</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Emelichev, V A</creator><creator>Kuzmin, K G</creator><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060701</creationdate><title>Stability radius of an efficient solution of a vector problem of integer linear programming in the Goelder metric</title><author>Emelichev, V A ; Kuzmin, K G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_349338343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emelichev, V A</creatorcontrib><creatorcontrib>Kuzmin, K G</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emelichev, V A</au><au>Kuzmin, K G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability radius of an efficient solution of a vector problem of integer linear programming in the Goelder metric</atitle><jtitle>Cybernetics and systems analysis</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>42</volume><issue>4</issue><spage>609</spage><epage>614</epage><pages>609-614</pages><issn>1060-0396</issn><abstract>A vector (multicriterion) problem of integer linear programming is considered on a finite set of feasible solutions. A metric l(p), 1 , p , !, is defined on the parameter space of the problem. A formula of the maximum permissible level of perturbations is obtained for the parameters that preserve the efficiency (Pareto optimality) of a given solution. Necessary and sufficient conditions of two types of stability of the problem are obtained as corollaries.</abstract><doi>10.1007/s10559-006-0097-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2006-07, Vol.42 (4), p.609-614
issn 1060-0396
language eng
recordid cdi_proquest_miscellaneous_34933834
source SpringerLink Journals
title Stability radius of an efficient solution of a vector problem of integer linear programming in the Goelder metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20radius%20of%20an%20efficient%20solution%20of%20a%20vector%20problem%20of%20integer%20linear%20programming%20in%20the%20Goelder%20metric&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Emelichev,%20V%20A&rft.date=2006-07-01&rft.volume=42&rft.issue=4&rft.spage=609&rft.epage=614&rft.pages=609-614&rft.issn=1060-0396&rft_id=info:doi/10.1007/s10559-006-0097-0&rft_dat=%3Cproquest%3E34933834%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34933834&rft_id=info:pmid/&rfr_iscdi=true