Self-supervised relation extraction from the Web
Web extraction systems attempt to use the immense amount of unlabeled text in the Web in order to create large lists of entities and relations. Unlike traditional Information Extraction methods, the Web extraction systems do not label every mention of the target entity or relation, instead focusing...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2008-10, Vol.17 (1), p.17-33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Knowledge and information systems |
container_volume | 17 |
creator | Rozenfeld, Benjamin Feldman, Ronen |
description | Web extraction systems attempt to use the immense amount of unlabeled text in the Web in order to create large lists of entities and relations. Unlike traditional Information Extraction methods, the Web extraction systems do not label every mention of the target entity or relation, instead focusing on extracting as many different instances as possible while keeping the precision of the resulting list reasonably high. SRES is a self-supervised Web relation extraction system that learns powerful extraction patterns from unlabeled text, using short descriptions of the target relations and their attributes. SRES automatically generates the training data needed for its pattern-learning component. The performance of SRES is further enhanced by classifying its output instances using the properties of the instances and the patterns. The features we use for classification and the trained classification model are independent from the target relation, which we demonstrate in a series of experiments. We also compare the performance of SRES to the performance of the state-of-the-art KnowItAll system, and to the performance of its pattern learning component, which learns simpler pattern language than SRES. |
doi_str_mv | 10.1007/s10115-007-0110-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34930263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1571810471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-be1aefd2f8d58102901374e79ea635fcff76774d3cd1062100bf66fae76e65063</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG9F0Ft0JmmT7VEW_8GCBxWPIdtOtEu3XZNW9Nub2kVB8DQP5pc3L4-xY4RzBNAXAQEx41HyKICrHTYBgTmXiGp3q1Fqvc8OQlgBoFaIEwYPVDse-g359ypQmXiqbVe1TUIfnbfFt3S-XSfdKyXPtDxke87WgY62c8qerq8e57d8cX9zN79c8CIF3fEloSVXCjcrsxmCyCEeT0nnZJXMXOGcVlqnpSxKBCXiH5ZOKWdJK1IZKDllZ6PvxrdvPYXOrKtQUF3bhto-GJnmEoSSETz5A67a3jcxmxGQSoi38wjhCBW-DcGTMxtfra3_NAhmKNCMBZpBDgWaIcHp1tiGwtbO26aows9DAToXuRaREyMX4qp5If8b4H_zLy-XfhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204300299</pqid></control><display><type>article</type><title>Self-supervised relation extraction from the Web</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rozenfeld, Benjamin ; Feldman, Ronen</creator><creatorcontrib>Rozenfeld, Benjamin ; Feldman, Ronen</creatorcontrib><description>Web extraction systems attempt to use the immense amount of unlabeled text in the Web in order to create large lists of entities and relations. Unlike traditional Information Extraction methods, the Web extraction systems do not label every mention of the target entity or relation, instead focusing on extracting as many different instances as possible while keeping the precision of the resulting list reasonably high. SRES is a self-supervised Web relation extraction system that learns powerful extraction patterns from unlabeled text, using short descriptions of the target relations and their attributes. SRES automatically generates the training data needed for its pattern-learning component. The performance of SRES is further enhanced by classifying its output instances using the properties of the instances and the patterns. The features we use for classification and the trained classification model are independent from the target relation, which we demonstrate in a series of experiments. We also compare the performance of SRES to the performance of the state-of-the-art KnowItAll system, and to the performance of its pattern learning component, which learns simpler pattern language than SRES.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-007-0110-6</identifier><identifier>CODEN: KISNCR</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data Mining and Knowledge Discovery ; Database Management ; Exact sciences and technology ; Information retrieval ; Information Storage and Retrieval ; Information systems ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; Information systems. Data bases ; Internet ; IT in Business ; Machine learning ; Memory organisation. Data processing ; Regular Paper ; Seeds ; Software ; Studies</subject><ispartof>Knowledge and information systems, 2008-10, Vol.17 (1), p.17-33</ispartof><rights>Springer-Verlag London Limited 2007</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag London Limited 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-be1aefd2f8d58102901374e79ea635fcff76774d3cd1062100bf66fae76e65063</citedby><cites>FETCH-LOGICAL-c407t-be1aefd2f8d58102901374e79ea635fcff76774d3cd1062100bf66fae76e65063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-007-0110-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-007-0110-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20792972$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozenfeld, Benjamin</creatorcontrib><creatorcontrib>Feldman, Ronen</creatorcontrib><title>Self-supervised relation extraction from the Web</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Web extraction systems attempt to use the immense amount of unlabeled text in the Web in order to create large lists of entities and relations. Unlike traditional Information Extraction methods, the Web extraction systems do not label every mention of the target entity or relation, instead focusing on extracting as many different instances as possible while keeping the precision of the resulting list reasonably high. SRES is a self-supervised Web relation extraction system that learns powerful extraction patterns from unlabeled text, using short descriptions of the target relations and their attributes. SRES automatically generates the training data needed for its pattern-learning component. The performance of SRES is further enhanced by classifying its output instances using the properties of the instances and the patterns. The features we use for classification and the trained classification model are independent from the target relation, which we demonstrate in a series of experiments. We also compare the performance of SRES to the performance of the state-of-the-art KnowItAll system, and to the performance of its pattern learning component, which learns simpler pattern language than SRES.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Exact sciences and technology</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Information systems</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Information systems. Data bases</subject><subject>Internet</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Memory organisation. Data processing</subject><subject>Regular Paper</subject><subject>Seeds</subject><subject>Software</subject><subject>Studies</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG9F0Ft0JmmT7VEW_8GCBxWPIdtOtEu3XZNW9Nub2kVB8DQP5pc3L4-xY4RzBNAXAQEx41HyKICrHTYBgTmXiGp3q1Fqvc8OQlgBoFaIEwYPVDse-g359ypQmXiqbVe1TUIfnbfFt3S-XSfdKyXPtDxke87WgY62c8qerq8e57d8cX9zN79c8CIF3fEloSVXCjcrsxmCyCEeT0nnZJXMXOGcVlqnpSxKBCXiH5ZOKWdJK1IZKDllZ6PvxrdvPYXOrKtQUF3bhto-GJnmEoSSETz5A67a3jcxmxGQSoi38wjhCBW-DcGTMxtfra3_NAhmKNCMBZpBDgWaIcHp1tiGwtbO26aows9DAToXuRaREyMX4qp5If8b4H_zLy-XfhE</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Rozenfeld, Benjamin</creator><creator>Feldman, Ronen</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20081001</creationdate><title>Self-supervised relation extraction from the Web</title><author>Rozenfeld, Benjamin ; Feldman, Ronen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-be1aefd2f8d58102901374e79ea635fcff76774d3cd1062100bf66fae76e65063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Exact sciences and technology</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Information systems</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Information systems. Data bases</topic><topic>Internet</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Memory organisation. Data processing</topic><topic>Regular Paper</topic><topic>Seeds</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozenfeld, Benjamin</creatorcontrib><creatorcontrib>Feldman, Ronen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozenfeld, Benjamin</au><au>Feldman, Ronen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-supervised relation extraction from the Web</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>17</volume><issue>1</issue><spage>17</spage><epage>33</epage><pages>17-33</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><coden>KISNCR</coden><abstract>Web extraction systems attempt to use the immense amount of unlabeled text in the Web in order to create large lists of entities and relations. Unlike traditional Information Extraction methods, the Web extraction systems do not label every mention of the target entity or relation, instead focusing on extracting as many different instances as possible while keeping the precision of the resulting list reasonably high. SRES is a self-supervised Web relation extraction system that learns powerful extraction patterns from unlabeled text, using short descriptions of the target relations and their attributes. SRES automatically generates the training data needed for its pattern-learning component. The performance of SRES is further enhanced by classifying its output instances using the properties of the instances and the patterns. The features we use for classification and the trained classification model are independent from the target relation, which we demonstrate in a series of experiments. We also compare the performance of SRES to the performance of the state-of-the-art KnowItAll system, and to the performance of its pattern learning component, which learns simpler pattern language than SRES.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s10115-007-0110-6</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2008-10, Vol.17 (1), p.17-33 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_miscellaneous_34930263 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Computer systems and distributed systems. User interface Data Mining and Knowledge Discovery Database Management Exact sciences and technology Information retrieval Information Storage and Retrieval Information systems Information Systems and Communication Service Information Systems Applications (incl.Internet) Information systems. Data bases Internet IT in Business Machine learning Memory organisation. Data processing Regular Paper Seeds Software Studies |
title | Self-supervised relation extraction from the Web |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-supervised%20relation%20extraction%20from%20the%20Web&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Rozenfeld,%20Benjamin&rft.date=2008-10-01&rft.volume=17&rft.issue=1&rft.spage=17&rft.epage=33&rft.pages=17-33&rft.issn=0219-1377&rft.eissn=0219-3116&rft.coden=KISNCR&rft_id=info:doi/10.1007/s10115-007-0110-6&rft_dat=%3Cproquest_cross%3E1571810471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204300299&rft_id=info:pmid/&rfr_iscdi=true |