Estimation and Model Selection for an IDE-Based Spatio-Temporal Model

A state space model of the stochastic spatio-temporal integro-difference equation (IDE) is derived. Based on multidimensional sampling theory, the dimensions of the state space and parameter space of the model are identified from the spatial bandwidth of the system and the support of the redistribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-02, Vol.57 (2), p.482-492
Hauptverfasser: Scerri, K., Dewar, M., Kadirkamanathan, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492
container_issue 2
container_start_page 482
container_title IEEE transactions on signal processing
container_volume 57
creator Scerri, K.
Dewar, M.
Kadirkamanathan, V.
description A state space model of the stochastic spatio-temporal integro-difference equation (IDE) is derived. Based on multidimensional sampling theory, the dimensions of the state space and parameter space of the model are identified from the spatial bandwidth of the system and the support of the redistribution kernel of the IDE. When both the bandwidth and the kernel support are unknown, a method to propose a number of state space and parameter space dimensions is presented. These chosen dimensions result in a number of candidate model structures. Bayesian model selection, making use of Bayes factor, the data augmentation algorithm and importance sampling, is then used to identify the model best suited to represent the data in a maximum a posteriori sense.
doi_str_mv 10.1109/TSP.2008.2008550
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34928816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4671054</ieee_id><sourcerecordid>34928816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4793df837bd258cb94b4f6fd747ab260e6eb98aac6d2b95f8ea5900e8f33e5753</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxYMoWKt3wUsQ1FPqfn8ctUYtVBRawduySWYhJU3qbnvwv3fblB48eNkZZn7vwbxNkkuMRhgjfT-ffYwIQmr3cI6OkgHWDGeISXEce8RpxpX8Ok3OQlgghBnTYpDkeVjXS7uuuza1bZW-dRU06QwaKHcz1_k4TydPefZoA1TpbLWFszksV523TS84T06cbQJc7Osw-XzO5-PXbPr-Mhk_TLOSKrrOmNS0corKoiJclYVmBXPCVZJJWxCBQEChlbWlqEihuVNguUYIlKMUuOR0mNz1vivffW8grM2yDiU0jW2h2wSjJI_3Ii4jefsvSZkmSmERwes_4KLb-DZeYZTAmBKKWYRQD5W-C8GDMysfU_M_BiOzjd_E-M02ebOPP0pu9r42lLZx3rZlHQ46grEkjGytr3quBoDDmgkZf4zRX-tLi6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132314</pqid></control><display><type>article</type><title>Estimation and Model Selection for an IDE-Based Spatio-Temporal Model</title><source>IEEE Electronic Library (IEL)</source><creator>Scerri, K. ; Dewar, M. ; Kadirkamanathan, V.</creator><creatorcontrib>Scerri, K. ; Dewar, M. ; Kadirkamanathan, V.</creatorcontrib><description>A state space model of the stochastic spatio-temporal integro-difference equation (IDE) is derived. Based on multidimensional sampling theory, the dimensions of the state space and parameter space of the model are identified from the spatial bandwidth of the system and the support of the redistribution kernel of the IDE. When both the bandwidth and the kernel support are unknown, a method to propose a number of state space and parameter space dimensions is presented. These chosen dimensions result in a number of candidate model structures. Bayesian model selection, making use of Bayes factor, the data augmentation algorithm and importance sampling, is then used to identify the model best suited to represent the data in a maximum a posteriori sense.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2008550</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Augmentation ; Bandwidth ; Bayes factor ; Bayesian analysis ; Biological system modeling ; Brain modeling ; data augmentation (DA) algorithm ; dynamic spatio-temporal modeling ; Environmental factors ; Exact sciences and technology ; Importance sampling ; Information, signal and communications theory ; integro-difference equations ; Kernel ; Kernels ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Monte Carlo methods ; Organisms ; Predictive models ; Sampling ; Signal processing ; State-space methods ; state-space models ; Systems engineering and theory ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.482-492</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4793df837bd258cb94b4f6fd747ab260e6eb98aac6d2b95f8ea5900e8f33e5753</citedby><cites>FETCH-LOGICAL-c383t-4793df837bd258cb94b4f6fd747ab260e6eb98aac6d2b95f8ea5900e8f33e5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4671054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4671054$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21172424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scerri, K.</creatorcontrib><creatorcontrib>Dewar, M.</creatorcontrib><creatorcontrib>Kadirkamanathan, V.</creatorcontrib><title>Estimation and Model Selection for an IDE-Based Spatio-Temporal Model</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A state space model of the stochastic spatio-temporal integro-difference equation (IDE) is derived. Based on multidimensional sampling theory, the dimensions of the state space and parameter space of the model are identified from the spatial bandwidth of the system and the support of the redistribution kernel of the IDE. When both the bandwidth and the kernel support are unknown, a method to propose a number of state space and parameter space dimensions is presented. These chosen dimensions result in a number of candidate model structures. Bayesian model selection, making use of Bayes factor, the data augmentation algorithm and importance sampling, is then used to identify the model best suited to represent the data in a maximum a posteriori sense.</description><subject>Applied sciences</subject><subject>Augmentation</subject><subject>Bandwidth</subject><subject>Bayes factor</subject><subject>Bayesian analysis</subject><subject>Biological system modeling</subject><subject>Brain modeling</subject><subject>data augmentation (DA) algorithm</subject><subject>dynamic spatio-temporal modeling</subject><subject>Environmental factors</subject><subject>Exact sciences and technology</subject><subject>Importance sampling</subject><subject>Information, signal and communications theory</subject><subject>integro-difference equations</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Monte Carlo methods</subject><subject>Organisms</subject><subject>Predictive models</subject><subject>Sampling</subject><subject>Signal processing</subject><subject>State-space methods</subject><subject>state-space models</subject><subject>Systems engineering and theory</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1Lw0AQxYMoWKt3wUsQ1FPqfn8ctUYtVBRawduySWYhJU3qbnvwv3fblB48eNkZZn7vwbxNkkuMRhgjfT-ffYwIQmr3cI6OkgHWDGeISXEce8RpxpX8Ok3OQlgghBnTYpDkeVjXS7uuuza1bZW-dRU06QwaKHcz1_k4TydPefZoA1TpbLWFszksV523TS84T06cbQJc7Osw-XzO5-PXbPr-Mhk_TLOSKrrOmNS0corKoiJclYVmBXPCVZJJWxCBQEChlbWlqEihuVNguUYIlKMUuOR0mNz1vivffW8grM2yDiU0jW2h2wSjJI_3Ii4jefsvSZkmSmERwes_4KLb-DZeYZTAmBKKWYRQD5W-C8GDMysfU_M_BiOzjd_E-M02ebOPP0pu9r42lLZx3rZlHQ46grEkjGytr3quBoDDmgkZf4zRX-tLi6k</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Scerri, K.</creator><creator>Dewar, M.</creator><creator>Kadirkamanathan, V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Estimation and Model Selection for an IDE-Based Spatio-Temporal Model</title><author>Scerri, K. ; Dewar, M. ; Kadirkamanathan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4793df837bd258cb94b4f6fd747ab260e6eb98aac6d2b95f8ea5900e8f33e5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Augmentation</topic><topic>Bandwidth</topic><topic>Bayes factor</topic><topic>Bayesian analysis</topic><topic>Biological system modeling</topic><topic>Brain modeling</topic><topic>data augmentation (DA) algorithm</topic><topic>dynamic spatio-temporal modeling</topic><topic>Environmental factors</topic><topic>Exact sciences and technology</topic><topic>Importance sampling</topic><topic>Information, signal and communications theory</topic><topic>integro-difference equations</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Monte Carlo methods</topic><topic>Organisms</topic><topic>Predictive models</topic><topic>Sampling</topic><topic>Signal processing</topic><topic>State-space methods</topic><topic>state-space models</topic><topic>Systems engineering and theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scerri, K.</creatorcontrib><creatorcontrib>Dewar, M.</creatorcontrib><creatorcontrib>Kadirkamanathan, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scerri, K.</au><au>Dewar, M.</au><au>Kadirkamanathan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and Model Selection for an IDE-Based Spatio-Temporal Model</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>57</volume><issue>2</issue><spage>482</spage><epage>492</epage><pages>482-492</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A state space model of the stochastic spatio-temporal integro-difference equation (IDE) is derived. Based on multidimensional sampling theory, the dimensions of the state space and parameter space of the model are identified from the spatial bandwidth of the system and the support of the redistribution kernel of the IDE. When both the bandwidth and the kernel support are unknown, a method to propose a number of state space and parameter space dimensions is presented. These chosen dimensions result in a number of candidate model structures. Bayesian model selection, making use of Bayes factor, the data augmentation algorithm and importance sampling, is then used to identify the model best suited to represent the data in a maximum a posteriori sense.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2008550</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.482-492
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_34928816
source IEEE Electronic Library (IEL)
subjects Applied sciences
Augmentation
Bandwidth
Bayes factor
Bayesian analysis
Biological system modeling
Brain modeling
data augmentation (DA) algorithm
dynamic spatio-temporal modeling
Environmental factors
Exact sciences and technology
Importance sampling
Information, signal and communications theory
integro-difference equations
Kernel
Kernels
Mathematical analysis
Mathematical models
Miscellaneous
Monte Carlo methods
Organisms
Predictive models
Sampling
Signal processing
State-space methods
state-space models
Systems engineering and theory
Telecommunications and information theory
title Estimation and Model Selection for an IDE-Based Spatio-Temporal Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20Model%20Selection%20for%20an%20IDE-Based%20Spatio-Temporal%20Model&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Scerri,%20K.&rft.date=2009-02-01&rft.volume=57&rft.issue=2&rft.spage=482&rft.epage=492&rft.pages=482-492&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2008550&rft_dat=%3Cproquest_RIE%3E34928816%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861132314&rft_id=info:pmid/&rft_ieee_id=4671054&rfr_iscdi=true