Review of nucleate pool boiling bubble heat transfer mechanisms

Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multiphase flow 2009-12, Vol.35 (12), p.1067-1076
1. Verfasser: Kim, Jungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1076
container_issue 12
container_start_page 1067
container_title International journal of multiphase flow
container_volume 35
creator Kim, Jungho
description Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.
doi_str_mv 10.1016/j.ijmultiphaseflow.2009.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34922638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301932209001311</els_id><sourcerecordid>34922638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EEkvb_5ALvSWMPfY6uYBQBRSpUiVEz5btHbNeOfFiJ1T992S1FQdOPc1hPr2n9zF2zaHjwLcfDl08jEua43FvK4WUHzsBMHSgO4D-FdvwXg8tKsTXbAMIvB1QiLfsXa0HAFBa4oZ9-kF_Ij02OTTT4hPZmZpjzqlxOaY4_Wrc4lyiZr9-mrnYqQYqzUh-b6dYx3rJ3gSbKl093wv28PXLz5vb9u7-2_ebz3etl1ucW0TiErgciCOAUw6DROmHwfdaaqWAB4fCDypo55zmjnY7JYhUkKBQI16w63PuseTfC9XZjLF6SslOlJdqUA5CbLFfwY9n0Jdca6FgjiWOtjwZDubkzRzM_97MyZsBbVZva8D75yZbvU1h3exj_ZciBPRcqxN3e-Zonb06LKb6SJOnXSzkZ7PL8aWVfwElYo4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34922638</pqid></control><display><type>article</type><title>Review of nucleate pool boiling bubble heat transfer mechanisms</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Jungho</creator><creatorcontrib>Kim, Jungho</creatorcontrib><description>Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.</description><identifier>ISSN: 0301-9322</identifier><identifier>EISSN: 1879-3533</identifier><identifier>DOI: 10.1016/j.ijmultiphaseflow.2009.07.008</identifier><identifier>CODEN: IJMFBP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; Bubbles ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat transfer ; Heat transfer mechanisms ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of multiphase flow, 2009-12, Vol.35 (12), p.1067-1076</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</citedby><cites>FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301932209001311$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22081758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jungho</creatorcontrib><title>Review of nucleate pool boiling bubble heat transfer mechanisms</title><title>International journal of multiphase flow</title><description>Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Bubbles</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Heat transfer mechanisms</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0301-9322</issn><issn>1879-3533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFv1DAQhS0EEkvb_5ALvSWMPfY6uYBQBRSpUiVEz5btHbNeOfFiJ1T992S1FQdOPc1hPr2n9zF2zaHjwLcfDl08jEua43FvK4WUHzsBMHSgO4D-FdvwXg8tKsTXbAMIvB1QiLfsXa0HAFBa4oZ9-kF_Ij02OTTT4hPZmZpjzqlxOaY4_Wrc4lyiZr9-mrnYqQYqzUh-b6dYx3rJ3gSbKl093wv28PXLz5vb9u7-2_ebz3etl1ucW0TiErgciCOAUw6DROmHwfdaaqWAB4fCDypo55zmjnY7JYhUkKBQI16w63PuseTfC9XZjLF6SslOlJdqUA5CbLFfwY9n0Jdca6FgjiWOtjwZDubkzRzM_97MyZsBbVZva8D75yZbvU1h3exj_ZciBPRcqxN3e-Zonb06LKb6SJOnXSzkZ7PL8aWVfwElYo4w</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Kim, Jungho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Review of nucleate pool boiling bubble heat transfer mechanisms</title><author>Kim, Jungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Bubbles</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Heat transfer mechanisms</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jungho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of multiphase flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of nucleate pool boiling bubble heat transfer mechanisms</atitle><jtitle>International journal of multiphase flow</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>35</volume><issue>12</issue><spage>1067</spage><epage>1076</epage><pages>1067-1076</pages><issn>0301-9322</issn><eissn>1879-3533</eissn><coden>IJMFBP</coden><abstract>Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmultiphaseflow.2009.07.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-9322
ispartof International journal of multiphase flow, 2009-12, Vol.35 (12), p.1067-1076
issn 0301-9322
1879-3533
language eng
recordid cdi_proquest_miscellaneous_34922638
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boiling
Bubbles
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat transfer
Heat transfer mechanisms
Theoretical studies. Data and constants. Metering
title Review of nucleate pool boiling bubble heat transfer mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20nucleate%20pool%20boiling%20bubble%20heat%20transfer%20mechanisms&rft.jtitle=International%20journal%20of%20multiphase%20flow&rft.au=Kim,%20Jungho&rft.date=2009-12-01&rft.volume=35&rft.issue=12&rft.spage=1067&rft.epage=1076&rft.pages=1067-1076&rft.issn=0301-9322&rft.eissn=1879-3533&rft.coden=IJMFBP&rft_id=info:doi/10.1016/j.ijmultiphaseflow.2009.07.008&rft_dat=%3Cproquest_cross%3E34922638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34922638&rft_id=info:pmid/&rft_els_id=S0301932209001311&rfr_iscdi=true