Review of nucleate pool boiling bubble heat transfer mechanisms
Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proli...
Gespeichert in:
Veröffentlicht in: | International journal of multiphase flow 2009-12, Vol.35 (12), p.1067-1076 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1076 |
---|---|
container_issue | 12 |
container_start_page | 1067 |
container_title | International journal of multiphase flow |
container_volume | 35 |
creator | Kim, Jungho |
description | Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer. |
doi_str_mv | 10.1016/j.ijmultiphaseflow.2009.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34922638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301932209001311</els_id><sourcerecordid>34922638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EEkvb_5ALvSWMPfY6uYBQBRSpUiVEz5btHbNeOfFiJ1T992S1FQdOPc1hPr2n9zF2zaHjwLcfDl08jEua43FvK4WUHzsBMHSgO4D-FdvwXg8tKsTXbAMIvB1QiLfsXa0HAFBa4oZ9-kF_Ij02OTTT4hPZmZpjzqlxOaY4_Wrc4lyiZr9-mrnYqQYqzUh-b6dYx3rJ3gSbKl093wv28PXLz5vb9u7-2_ebz3etl1ucW0TiErgciCOAUw6DROmHwfdaaqWAB4fCDypo55zmjnY7JYhUkKBQI16w63PuseTfC9XZjLF6SslOlJdqUA5CbLFfwY9n0Jdca6FgjiWOtjwZDubkzRzM_97MyZsBbVZva8D75yZbvU1h3exj_ZciBPRcqxN3e-Zonb06LKb6SJOnXSzkZ7PL8aWVfwElYo4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34922638</pqid></control><display><type>article</type><title>Review of nucleate pool boiling bubble heat transfer mechanisms</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Jungho</creator><creatorcontrib>Kim, Jungho</creatorcontrib><description>Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.</description><identifier>ISSN: 0301-9322</identifier><identifier>EISSN: 1879-3533</identifier><identifier>DOI: 10.1016/j.ijmultiphaseflow.2009.07.008</identifier><identifier>CODEN: IJMFBP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; Bubbles ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat transfer ; Heat transfer mechanisms ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of multiphase flow, 2009-12, Vol.35 (12), p.1067-1076</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</citedby><cites>FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301932209001311$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22081758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jungho</creatorcontrib><title>Review of nucleate pool boiling bubble heat transfer mechanisms</title><title>International journal of multiphase flow</title><description>Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Bubbles</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Heat transfer mechanisms</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0301-9322</issn><issn>1879-3533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFv1DAQhS0EEkvb_5ALvSWMPfY6uYBQBRSpUiVEz5btHbNeOfFiJ1T992S1FQdOPc1hPr2n9zF2zaHjwLcfDl08jEua43FvK4WUHzsBMHSgO4D-FdvwXg8tKsTXbAMIvB1QiLfsXa0HAFBa4oZ9-kF_Ij02OTTT4hPZmZpjzqlxOaY4_Wrc4lyiZr9-mrnYqQYqzUh-b6dYx3rJ3gSbKl093wv28PXLz5vb9u7-2_ebz3etl1ucW0TiErgciCOAUw6DROmHwfdaaqWAB4fCDypo55zmjnY7JYhUkKBQI16w63PuseTfC9XZjLF6SslOlJdqUA5CbLFfwY9n0Jdca6FgjiWOtjwZDubkzRzM_97MyZsBbVZva8D75yZbvU1h3exj_ZciBPRcqxN3e-Zonb06LKb6SJOnXSzkZ7PL8aWVfwElYo4w</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Kim, Jungho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Review of nucleate pool boiling bubble heat transfer mechanisms</title><author>Kim, Jungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-33e140149e1300b5b3f434c99c87475501fb32c95f7bbb71bedd52ee5f4053733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Bubbles</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Heat transfer mechanisms</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jungho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of multiphase flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of nucleate pool boiling bubble heat transfer mechanisms</atitle><jtitle>International journal of multiphase flow</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>35</volume><issue>12</issue><spage>1067</spage><epage>1076</epage><pages>1067-1076</pages><issn>0301-9322</issn><eissn>1879-3533</eissn><coden>IJMFBP</coden><abstract>Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmultiphaseflow.2009.07.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-9322 |
ispartof | International journal of multiphase flow, 2009-12, Vol.35 (12), p.1067-1076 |
issn | 0301-9322 1879-3533 |
language | eng |
recordid | cdi_proquest_miscellaneous_34922638 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boiling Bubbles Energy Energy. Thermal use of fuels Exact sciences and technology Heat transfer Heat transfer mechanisms Theoretical studies. Data and constants. Metering |
title | Review of nucleate pool boiling bubble heat transfer mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20nucleate%20pool%20boiling%20bubble%20heat%20transfer%20mechanisms&rft.jtitle=International%20journal%20of%20multiphase%20flow&rft.au=Kim,%20Jungho&rft.date=2009-12-01&rft.volume=35&rft.issue=12&rft.spage=1067&rft.epage=1076&rft.pages=1067-1076&rft.issn=0301-9322&rft.eissn=1879-3533&rft.coden=IJMFBP&rft_id=info:doi/10.1016/j.ijmultiphaseflow.2009.07.008&rft_dat=%3Cproquest_cross%3E34922638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34922638&rft_id=info:pmid/&rft_els_id=S0301932209001311&rfr_iscdi=true |