A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method
The approach called the method of Fuzzy Joint Points (FJP) is considered in which the fuzziness of clusterization lies in the detailedness of taking into account properties of elements in forming sets of similar elements. Based on this approach, a new robust variant of the FJP algorithm is proposed....
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2008, Vol.44 (1), p.7-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | Cybernetics and systems analysis |
container_volume | 44 |
creator | Nasibov, E. N. |
description | The approach called the method of Fuzzy Joint Points (FJP) is considered in which the fuzziness of clusterization lies in the detailedness of taking into account properties of elements in forming sets of similar elements. Based on this approach, a new robust variant of the FJP algorithm is proposed. The properties of this FJP algorithm are analyzed and a sufficient condition for the correct recognition of the hidden structure of clusters is proved. |
doi_str_mv | 10.1007/s10559-008-0002-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34911069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34911069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-66f9c0cbbe8669045898781cb62ae7e9ef473dd3234104014dc0603f286f50703</originalsourceid><addsrcrecordid>eNp1kEtLxDAYRYMoOI7-AHfBhbvql6bNYzkMvkBwo-vQpslMh7YZk3Qx8-tNqSAKLvKAnHv5chC6JnBHAPh9IFCWMgMQaUGewQlakJLTTFDKT9MdGGRAJTtHFyHsEkOBiwXqV9i7egwRV93G-TZue2ydx8F1Y2zdgJ3FcWuwHY_HA9ZdIo1vhw3ep1hnepyQ6b2uQht-wzvXDhHvpz3g3sStay7Rma26YK6-zyX6eHx4Xz9nr29PL-vVa6ZpwWLGmJUadF0bwZiEohRScEF0zfLKcCONLThtGprTgkABpGh0-h61uWC2BA50iW7n3jTl52hCVH0btOm6ajBuDIoWkiQjMoE3f8CdG_2QZlM5YSVQLqY2MkPauxC8sWrv277yB0VATfbVbF8l-2qyr6ZMPmfCftJl_E_x_6EvTcGHhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216503780</pqid></control><display><type>article</type><title>A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nasibov, E. N.</creator><creatorcontrib>Nasibov, E. N.</creatorcontrib><description>The approach called the method of Fuzzy Joint Points (FJP) is considered in which the fuzziness of clusterization lies in the detailedness of taking into account properties of elements in forming sets of similar elements. Based on this approach, a new robust variant of the FJP algorithm is proposed. The properties of this FJP algorithm are analyzed and a sufficient condition for the correct recognition of the hidden structure of clusters is proved.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-008-0002-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Cluster analysis ; Clustering ; Control ; Cybernetics ; Fuzzy sets ; Investigations ; Mathematics ; Mathematics and Statistics ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Studies ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2008, Vol.44 (1), p.7-17</ispartof><rights>Springer Science+Business Media, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-66f9c0cbbe8669045898781cb62ae7e9ef473dd3234104014dc0603f286f50703</citedby><cites>FETCH-LOGICAL-c346t-66f9c0cbbe8669045898781cb62ae7e9ef473dd3234104014dc0603f286f50703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-008-0002-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-008-0002-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nasibov, E. N.</creatorcontrib><title>A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>The approach called the method of Fuzzy Joint Points (FJP) is considered in which the fuzziness of clusterization lies in the detailedness of taking into account properties of elements in forming sets of similar elements. Based on this approach, a new robust variant of the FJP algorithm is proposed. The properties of this FJP algorithm are analyzed and a sufficient condition for the correct recognition of the hidden structure of clusters is proved.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Control</subject><subject>Cybernetics</subject><subject>Fuzzy sets</subject><subject>Investigations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLxDAYRYMoOI7-AHfBhbvql6bNYzkMvkBwo-vQpslMh7YZk3Qx8-tNqSAKLvKAnHv5chC6JnBHAPh9IFCWMgMQaUGewQlakJLTTFDKT9MdGGRAJTtHFyHsEkOBiwXqV9i7egwRV93G-TZue2ydx8F1Y2zdgJ3FcWuwHY_HA9ZdIo1vhw3ep1hnepyQ6b2uQht-wzvXDhHvpz3g3sStay7Rma26YK6-zyX6eHx4Xz9nr29PL-vVa6ZpwWLGmJUadF0bwZiEohRScEF0zfLKcCONLThtGprTgkABpGh0-h61uWC2BA50iW7n3jTl52hCVH0btOm6ajBuDIoWkiQjMoE3f8CdG_2QZlM5YSVQLqY2MkPauxC8sWrv277yB0VATfbVbF8l-2qyr6ZMPmfCftJl_E_x_6EvTcGHhQ</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Nasibov, E. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method</title><author>Nasibov, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-66f9c0cbbe8669045898781cb62ae7e9ef473dd3234104014dc0603f286f50703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Control</topic><topic>Cybernetics</topic><topic>Fuzzy sets</topic><topic>Investigations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasibov, E. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasibov, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2008</date><risdate>2008</risdate><volume>44</volume><issue>1</issue><spage>7</spage><epage>17</epage><pages>7-17</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>The approach called the method of Fuzzy Joint Points (FJP) is considered in which the fuzziness of clusterization lies in the detailedness of taking into account properties of elements in forming sets of similar elements. Based on this approach, a new robust variant of the FJP algorithm is proposed. The properties of this FJP algorithm are analyzed and a sufficient condition for the correct recognition of the hidden structure of clusters is proved.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-008-0002-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2008, Vol.44 (1), p.7-17 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_miscellaneous_34911069 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Cluster analysis Clustering Control Cybernetics Fuzzy sets Investigations Mathematics Mathematics and Statistics Processor Architectures Software Engineering/Programming and Operating Systems Studies Systems Theory |
title | A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20algorithm%20for%20solution%20of%20the%20fuzzy%20clustering%20problem%20on%20the%20basis%20of%20the%20fuzzy%20joint%20points%20method&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Nasibov,%20E.%20N.&rft.date=2008&rft.volume=44&rft.issue=1&rft.spage=7&rft.epage=17&rft.pages=7-17&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-008-0002-0&rft_dat=%3Cproquest_cross%3E34911069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216503780&rft_id=info:pmid/&rfr_iscdi=true |