Nano- and microdot array formation by laser-induced dot transfer

Fabrication of FeSi 2 nano- and microdot array was performed by utilizing droplet ejection through laser-induced forward transfer, which we named laser-induced dot transfer (LIDT). An amorphous FeSi 2 alloy source film on a transparent support was illuminated from the support by a nanosecond excimer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2009-09, Vol.255 (24), p.9703-9706
Hauptverfasser: Narazaki, Aiko, Sato, Tadatake, Kurosaki, Ryozo, Kawaguchi, Yoshizo, Niino, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9706
container_issue 24
container_start_page 9703
container_title Applied surface science
container_volume 255
creator Narazaki, Aiko
Sato, Tadatake
Kurosaki, Ryozo
Kawaguchi, Yoshizo
Niino, Hiroyuki
description Fabrication of FeSi 2 nano- and microdot array was performed by utilizing droplet ejection through laser-induced forward transfer, which we named laser-induced dot transfer (LIDT). An amorphous FeSi 2 alloy source film on a transparent support was illuminated from the support by a nanosecond excimer laser pulse patterned into migcrogrid form, resulting in size- and site-controlled dot deposition. Micro-Raman spectroscopy confirmed β-FeSi 2 semiconducting crystalline phase even on unheated substrates. Moreover, the microdots exhibited near-infrared photoluminescence at the peak wavelength of 1.57 μm, which comes from the β-FeSi 2 crystalline phase precipitated during the LIDT process. The dot size was successfully reduced to approximately 500 and 300 nm in diameter and height, respectively. This technique is useful for integrating functional nano- and microdots under atmospheric room-temperature conditions.
doi_str_mv 10.1016/j.apsusc.2009.04.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34899828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433209004590</els_id><sourcerecordid>34899828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c97a41e415ad30364bf158f5a156ef0a43c1ae1fa726d87f14d37e6ecf838dd23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiywJbgz8RZEKjiS6pggdm62mfJVZoUO0Xqv8dVKkamG-557_Q-hFwzWjHK6rt1Bdu0S7bilLYVlRVV4oTMmG5EqZSWp2SWsbaUQvBzcpHSmlLG83ZGHt6hH8oCeldsgo2DG8YCYoR94Ye4gTEMfbHaFx0kjGXo3c6iKw7QGKFPHuMlOfPQJbw6zjn5en76XLyWy4-Xt8XjsrT561jatgHJUDIFTlBRy5VnSnsFTNXoKUhhGSDz0PDa6cYz6USDNVqvhXaOizm5ne5u4_C9wzSaTUgWuw56HHbJCKnbVnOdQTmBuU1KEb3ZxrCBuDeMmoMuszaTLnPQZag0WVeO3RzvQ7LQ-VzPhvSX5Zxx2iqVufuJw1z2J2A0yQbss5YQ0Y7GDeH_R7-au4J5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34899828</pqid></control><display><type>article</type><title>Nano- and microdot array formation by laser-induced dot transfer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Narazaki, Aiko ; Sato, Tadatake ; Kurosaki, Ryozo ; Kawaguchi, Yoshizo ; Niino, Hiroyuki</creator><creatorcontrib>Narazaki, Aiko ; Sato, Tadatake ; Kurosaki, Ryozo ; Kawaguchi, Yoshizo ; Niino, Hiroyuki</creatorcontrib><description>Fabrication of FeSi 2 nano- and microdot array was performed by utilizing droplet ejection through laser-induced forward transfer, which we named laser-induced dot transfer (LIDT). An amorphous FeSi 2 alloy source film on a transparent support was illuminated from the support by a nanosecond excimer laser pulse patterned into migcrogrid form, resulting in size- and site-controlled dot deposition. Micro-Raman spectroscopy confirmed β-FeSi 2 semiconducting crystalline phase even on unheated substrates. Moreover, the microdots exhibited near-infrared photoluminescence at the peak wavelength of 1.57 μm, which comes from the β-FeSi 2 crystalline phase precipitated during the LIDT process. The dot size was successfully reduced to approximately 500 and 300 nm in diameter and height, respectively. This technique is useful for integrating functional nano- and microdots under atmospheric room-temperature conditions.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2009.04.053</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atmospheric room-temperature conditions ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Laser-induced dot transfer ; Microdot ; Nano-array ; Near-infrared photoluminescence ; Physics ; β-FeSi 2 semiconductor</subject><ispartof>Applied surface science, 2009-09, Vol.255 (24), p.9703-9706</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c97a41e415ad30364bf158f5a156ef0a43c1ae1fa726d87f14d37e6ecf838dd23</citedby><cites>FETCH-LOGICAL-c433t-c97a41e415ad30364bf158f5a156ef0a43c1ae1fa726d87f14d37e6ecf838dd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433209004590$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22120955$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Narazaki, Aiko</creatorcontrib><creatorcontrib>Sato, Tadatake</creatorcontrib><creatorcontrib>Kurosaki, Ryozo</creatorcontrib><creatorcontrib>Kawaguchi, Yoshizo</creatorcontrib><creatorcontrib>Niino, Hiroyuki</creatorcontrib><title>Nano- and microdot array formation by laser-induced dot transfer</title><title>Applied surface science</title><description>Fabrication of FeSi 2 nano- and microdot array was performed by utilizing droplet ejection through laser-induced forward transfer, which we named laser-induced dot transfer (LIDT). An amorphous FeSi 2 alloy source film on a transparent support was illuminated from the support by a nanosecond excimer laser pulse patterned into migcrogrid form, resulting in size- and site-controlled dot deposition. Micro-Raman spectroscopy confirmed β-FeSi 2 semiconducting crystalline phase even on unheated substrates. Moreover, the microdots exhibited near-infrared photoluminescence at the peak wavelength of 1.57 μm, which comes from the β-FeSi 2 crystalline phase precipitated during the LIDT process. The dot size was successfully reduced to approximately 500 and 300 nm in diameter and height, respectively. This technique is useful for integrating functional nano- and microdots under atmospheric room-temperature conditions.</description><subject>Atmospheric room-temperature conditions</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Laser-induced dot transfer</subject><subject>Microdot</subject><subject>Nano-array</subject><subject>Near-infrared photoluminescence</subject><subject>Physics</subject><subject>β-FeSi 2 semiconductor</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiywJbgz8RZEKjiS6pggdm62mfJVZoUO0Xqv8dVKkamG-557_Q-hFwzWjHK6rt1Bdu0S7bilLYVlRVV4oTMmG5EqZSWp2SWsbaUQvBzcpHSmlLG83ZGHt6hH8oCeldsgo2DG8YCYoR94Ye4gTEMfbHaFx0kjGXo3c6iKw7QGKFPHuMlOfPQJbw6zjn5en76XLyWy4-Xt8XjsrT561jatgHJUDIFTlBRy5VnSnsFTNXoKUhhGSDz0PDa6cYz6USDNVqvhXaOizm5ne5u4_C9wzSaTUgWuw56HHbJCKnbVnOdQTmBuU1KEb3ZxrCBuDeMmoMuszaTLnPQZag0WVeO3RzvQ7LQ-VzPhvSX5Zxx2iqVufuJw1z2J2A0yQbss5YQ0Y7GDeH_R7-au4J5</recordid><startdate>20090930</startdate><enddate>20090930</enddate><creator>Narazaki, Aiko</creator><creator>Sato, Tadatake</creator><creator>Kurosaki, Ryozo</creator><creator>Kawaguchi, Yoshizo</creator><creator>Niino, Hiroyuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090930</creationdate><title>Nano- and microdot array formation by laser-induced dot transfer</title><author>Narazaki, Aiko ; Sato, Tadatake ; Kurosaki, Ryozo ; Kawaguchi, Yoshizo ; Niino, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c97a41e415ad30364bf158f5a156ef0a43c1ae1fa726d87f14d37e6ecf838dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric room-temperature conditions</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Laser-induced dot transfer</topic><topic>Microdot</topic><topic>Nano-array</topic><topic>Near-infrared photoluminescence</topic><topic>Physics</topic><topic>β-FeSi 2 semiconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narazaki, Aiko</creatorcontrib><creatorcontrib>Sato, Tadatake</creatorcontrib><creatorcontrib>Kurosaki, Ryozo</creatorcontrib><creatorcontrib>Kawaguchi, Yoshizo</creatorcontrib><creatorcontrib>Niino, Hiroyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narazaki, Aiko</au><au>Sato, Tadatake</au><au>Kurosaki, Ryozo</au><au>Kawaguchi, Yoshizo</au><au>Niino, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano- and microdot array formation by laser-induced dot transfer</atitle><jtitle>Applied surface science</jtitle><date>2009-09-30</date><risdate>2009</risdate><volume>255</volume><issue>24</issue><spage>9703</spage><epage>9706</epage><pages>9703-9706</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Fabrication of FeSi 2 nano- and microdot array was performed by utilizing droplet ejection through laser-induced forward transfer, which we named laser-induced dot transfer (LIDT). An amorphous FeSi 2 alloy source film on a transparent support was illuminated from the support by a nanosecond excimer laser pulse patterned into migcrogrid form, resulting in size- and site-controlled dot deposition. Micro-Raman spectroscopy confirmed β-FeSi 2 semiconducting crystalline phase even on unheated substrates. Moreover, the microdots exhibited near-infrared photoluminescence at the peak wavelength of 1.57 μm, which comes from the β-FeSi 2 crystalline phase precipitated during the LIDT process. The dot size was successfully reduced to approximately 500 and 300 nm in diameter and height, respectively. This technique is useful for integrating functional nano- and microdots under atmospheric room-temperature conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2009.04.053</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2009-09, Vol.255 (24), p.9703-9706
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_34899828
source Elsevier ScienceDirect Journals Complete
subjects Atmospheric room-temperature conditions
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Laser-induced dot transfer
Microdot
Nano-array
Near-infrared photoluminescence
Physics
β-FeSi 2 semiconductor
title Nano- and microdot array formation by laser-induced dot transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-%20and%20microdot%20array%20formation%20by%20laser-induced%20dot%20transfer&rft.jtitle=Applied%20surface%20science&rft.au=Narazaki,%20Aiko&rft.date=2009-09-30&rft.volume=255&rft.issue=24&rft.spage=9703&rft.epage=9706&rft.pages=9703-9706&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2009.04.053&rft_dat=%3Cproquest_cross%3E34899828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34899828&rft_id=info:pmid/&rft_els_id=S0169433209004590&rfr_iscdi=true