Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress

The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200 μM) for 1–7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2009-12, Vol.172 (1), p.479-484
Hauptverfasser: Gupta, D.K., Nicoloso, F.T., Schetinger, M.R.C., Rossato, L.V., Pereira, L.B., Castro, G.Y., Srivastava, S., Tripathi, R.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 1
container_start_page 479
container_title Journal of hazardous materials
container_volume 172
creator Gupta, D.K.
Nicoloso, F.T.
Schetinger, M.R.C.
Rossato, L.V.
Pereira, L.B.
Castro, G.Y.
Srivastava, S.
Tripathi, R.D.
description The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200 μM) for 1–7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4 d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion, Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.
doi_str_mv 10.1016/j.jhazmat.2009.06.141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34898137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389409010838</els_id><sourcerecordid>34898137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</originalsourceid><addsrcrecordid>eNqFkT-P1DAQxS0E4paDjwByA10WO3Ycu0KnE_-kk2igobEm9uTWq8RZPFlg-fRktRGU18w0v_dm9B5jL6XYSiHN2_12v4M_I8zbWgi3FWYrtXzENtK2qlJKmcdsI5TQlbJOX7FnRHshhGwb_ZRdSWfqRtb1hoWbPKfpd4qQZx6xx0zIRww7yIlGnjLfnWKZDlNOAYbhxO_L9Cvz7wh8hBNxQoxDyvfEjzli4eO0TJiRDwiR01yQ6Dl70sNA-GLd1-zbh_dfbz9Vd18-fr69uauCbsxcGRGh6UOPxtneGu20Dm3TGGiN09J0wUKHIG1UwRlwqu9Co63SUmBnNVh1zd5cfA9l-nFEmv2YKOAwQMbpSF5p66xU7YNgLZw2rT07NhcwlImoYO8PJY1QTl4Kf67B7_1agz_X4IXxSw2L7tV64NiNGP-r1twX4PUKAC259gVySPSPq2sj6qbWC_fuwuGS28-ExVNImAPGVDDMPk7pgVf-AmEYqjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20946788</pqid></control><display><type>article</type><title>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gupta, D.K. ; Nicoloso, F.T. ; Schetinger, M.R.C. ; Rossato, L.V. ; Pereira, L.B. ; Castro, G.Y. ; Srivastava, S. ; Tripathi, R.D.</creator><creatorcontrib>Gupta, D.K. ; Nicoloso, F.T. ; Schetinger, M.R.C. ; Rossato, L.V. ; Pereira, L.B. ; Castro, G.Y. ; Srivastava, S. ; Tripathi, R.D.</creatorcontrib><description>The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200 μM) for 1–7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4 d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion, Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2009.06.141</identifier><identifier>PMID: 19625122</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Antioxidants ; Antioxidants - metabolism ; Applied sciences ; Ascorbic Acid - chemistry ; Catalase ; Catalase - chemistry ; Catalase - metabolism ; Chlorophyll - chemistry ; Exact sciences and technology ; Hydroponics - methods ; Lead ; Lead - chemistry ; Lead - toxicity ; Lipid Peroxidation ; Malondialdehyde - chemistry ; Models, Statistical ; Pollution ; Porphobilinogen Synthase - chemistry ; Seedlings - drug effects ; Seedlings - metabolism ; Sulfhydryl Compounds - chemistry ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Zea mays ; Zea mays - metabolism ; δ-aminolevulinic acid dehydratase</subject><ispartof>Journal of hazardous materials, 2009-12, Vol.172 (1), p.479-484</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</citedby><cites>FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389409010838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22602524$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19625122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, D.K.</creatorcontrib><creatorcontrib>Nicoloso, F.T.</creatorcontrib><creatorcontrib>Schetinger, M.R.C.</creatorcontrib><creatorcontrib>Rossato, L.V.</creatorcontrib><creatorcontrib>Pereira, L.B.</creatorcontrib><creatorcontrib>Castro, G.Y.</creatorcontrib><creatorcontrib>Srivastava, S.</creatorcontrib><creatorcontrib>Tripathi, R.D.</creatorcontrib><title>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200 μM) for 1–7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4 d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion, Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.</description><subject>Adsorption</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Applied sciences</subject><subject>Ascorbic Acid - chemistry</subject><subject>Catalase</subject><subject>Catalase - chemistry</subject><subject>Catalase - metabolism</subject><subject>Chlorophyll - chemistry</subject><subject>Exact sciences and technology</subject><subject>Hydroponics - methods</subject><subject>Lead</subject><subject>Lead - chemistry</subject><subject>Lead - toxicity</subject><subject>Lipid Peroxidation</subject><subject>Malondialdehyde - chemistry</subject><subject>Models, Statistical</subject><subject>Pollution</subject><subject>Porphobilinogen Synthase - chemistry</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - metabolism</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Zea mays</subject><subject>Zea mays - metabolism</subject><subject>δ-aminolevulinic acid dehydratase</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT-P1DAQxS0E4paDjwByA10WO3Ycu0KnE_-kk2igobEm9uTWq8RZPFlg-fRktRGU18w0v_dm9B5jL6XYSiHN2_12v4M_I8zbWgi3FWYrtXzENtK2qlJKmcdsI5TQlbJOX7FnRHshhGwb_ZRdSWfqRtb1hoWbPKfpd4qQZx6xx0zIRww7yIlGnjLfnWKZDlNOAYbhxO_L9Cvz7wh8hBNxQoxDyvfEjzli4eO0TJiRDwiR01yQ6Dl70sNA-GLd1-zbh_dfbz9Vd18-fr69uauCbsxcGRGh6UOPxtneGu20Dm3TGGiN09J0wUKHIG1UwRlwqu9Co63SUmBnNVh1zd5cfA9l-nFEmv2YKOAwQMbpSF5p66xU7YNgLZw2rT07NhcwlImoYO8PJY1QTl4Kf67B7_1agz_X4IXxSw2L7tV64NiNGP-r1twX4PUKAC259gVySPSPq2sj6qbWC_fuwuGS28-ExVNImAPGVDDMPk7pgVf-AmEYqjA</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Gupta, D.K.</creator><creator>Nicoloso, F.T.</creator><creator>Schetinger, M.R.C.</creator><creator>Rossato, L.V.</creator><creator>Pereira, L.B.</creator><creator>Castro, G.Y.</creator><creator>Srivastava, S.</creator><creator>Tripathi, R.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091215</creationdate><title>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</title><author>Gupta, D.K. ; Nicoloso, F.T. ; Schetinger, M.R.C. ; Rossato, L.V. ; Pereira, L.B. ; Castro, G.Y. ; Srivastava, S. ; Tripathi, R.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Applied sciences</topic><topic>Ascorbic Acid - chemistry</topic><topic>Catalase</topic><topic>Catalase - chemistry</topic><topic>Catalase - metabolism</topic><topic>Chlorophyll - chemistry</topic><topic>Exact sciences and technology</topic><topic>Hydroponics - methods</topic><topic>Lead</topic><topic>Lead - chemistry</topic><topic>Lead - toxicity</topic><topic>Lipid Peroxidation</topic><topic>Malondialdehyde - chemistry</topic><topic>Models, Statistical</topic><topic>Pollution</topic><topic>Porphobilinogen Synthase - chemistry</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - metabolism</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Zea mays</topic><topic>Zea mays - metabolism</topic><topic>δ-aminolevulinic acid dehydratase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, D.K.</creatorcontrib><creatorcontrib>Nicoloso, F.T.</creatorcontrib><creatorcontrib>Schetinger, M.R.C.</creatorcontrib><creatorcontrib>Rossato, L.V.</creatorcontrib><creatorcontrib>Pereira, L.B.</creatorcontrib><creatorcontrib>Castro, G.Y.</creatorcontrib><creatorcontrib>Srivastava, S.</creatorcontrib><creatorcontrib>Tripathi, R.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, D.K.</au><au>Nicoloso, F.T.</au><au>Schetinger, M.R.C.</au><au>Rossato, L.V.</au><au>Pereira, L.B.</au><au>Castro, G.Y.</au><au>Srivastava, S.</au><au>Tripathi, R.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2009-12-15</date><risdate>2009</risdate><volume>172</volume><issue>1</issue><spage>479</spage><epage>484</epage><pages>479-484</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200 μM) for 1–7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4 d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion, Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19625122</pmid><doi>10.1016/j.jhazmat.2009.06.141</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2009-12, Vol.172 (1), p.479-484
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_34898137
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
Antioxidants
Antioxidants - metabolism
Applied sciences
Ascorbic Acid - chemistry
Catalase
Catalase - chemistry
Catalase - metabolism
Chlorophyll - chemistry
Exact sciences and technology
Hydroponics - methods
Lead
Lead - chemistry
Lead - toxicity
Lipid Peroxidation
Malondialdehyde - chemistry
Models, Statistical
Pollution
Porphobilinogen Synthase - chemistry
Seedlings - drug effects
Seedlings - metabolism
Sulfhydryl Compounds - chemistry
Superoxide dismutase
Superoxide Dismutase - metabolism
Zea mays
Zea mays - metabolism
δ-aminolevulinic acid dehydratase
title Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20defense%20mechanism%20in%20hydroponically%20grown%20Zea%20mays%20seedlings%20under%20moderate%20lead%20stress&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Gupta,%20D.K.&rft.date=2009-12-15&rft.volume=172&rft.issue=1&rft.spage=479&rft.epage=484&rft.pages=479-484&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2009.06.141&rft_dat=%3Cproquest_cross%3E34898137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20946788&rft_id=info:pmid/19625122&rft_els_id=S0304389409010838&rfr_iscdi=true