Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress
The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200 μM) for 1–7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2009-12, Vol.172 (1), p.479-484 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | 1 |
container_start_page | 479 |
container_title | Journal of hazardous materials |
container_volume | 172 |
creator | Gupta, D.K. Nicoloso, F.T. Schetinger, M.R.C. Rossato, L.V. Pereira, L.B. Castro, G.Y. Srivastava, S. Tripathi, R.D. |
description | The present study was designed to study the process of stress adaptation in roots and shoot of
Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200
μM) for 1–7
d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4
d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion,
Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects. |
doi_str_mv | 10.1016/j.jhazmat.2009.06.141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34898137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389409010838</els_id><sourcerecordid>34898137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</originalsourceid><addsrcrecordid>eNqFkT-P1DAQxS0E4paDjwByA10WO3Ycu0KnE_-kk2igobEm9uTWq8RZPFlg-fRktRGU18w0v_dm9B5jL6XYSiHN2_12v4M_I8zbWgi3FWYrtXzENtK2qlJKmcdsI5TQlbJOX7FnRHshhGwb_ZRdSWfqRtb1hoWbPKfpd4qQZx6xx0zIRww7yIlGnjLfnWKZDlNOAYbhxO_L9Cvz7wh8hBNxQoxDyvfEjzli4eO0TJiRDwiR01yQ6Dl70sNA-GLd1-zbh_dfbz9Vd18-fr69uauCbsxcGRGh6UOPxtneGu20Dm3TGGiN09J0wUKHIG1UwRlwqu9Co63SUmBnNVh1zd5cfA9l-nFEmv2YKOAwQMbpSF5p66xU7YNgLZw2rT07NhcwlImoYO8PJY1QTl4Kf67B7_1agz_X4IXxSw2L7tV64NiNGP-r1twX4PUKAC259gVySPSPq2sj6qbWC_fuwuGS28-ExVNImAPGVDDMPk7pgVf-AmEYqjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20946788</pqid></control><display><type>article</type><title>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gupta, D.K. ; Nicoloso, F.T. ; Schetinger, M.R.C. ; Rossato, L.V. ; Pereira, L.B. ; Castro, G.Y. ; Srivastava, S. ; Tripathi, R.D.</creator><creatorcontrib>Gupta, D.K. ; Nicoloso, F.T. ; Schetinger, M.R.C. ; Rossato, L.V. ; Pereira, L.B. ; Castro, G.Y. ; Srivastava, S. ; Tripathi, R.D.</creatorcontrib><description>The present study was designed to study the process of stress adaptation in roots and shoot of
Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200
μM) for 1–7
d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4
d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion,
Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2009.06.141</identifier><identifier>PMID: 19625122</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Antioxidants ; Antioxidants - metabolism ; Applied sciences ; Ascorbic Acid - chemistry ; Catalase ; Catalase - chemistry ; Catalase - metabolism ; Chlorophyll - chemistry ; Exact sciences and technology ; Hydroponics - methods ; Lead ; Lead - chemistry ; Lead - toxicity ; Lipid Peroxidation ; Malondialdehyde - chemistry ; Models, Statistical ; Pollution ; Porphobilinogen Synthase - chemistry ; Seedlings - drug effects ; Seedlings - metabolism ; Sulfhydryl Compounds - chemistry ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Zea mays ; Zea mays - metabolism ; δ-aminolevulinic acid dehydratase</subject><ispartof>Journal of hazardous materials, 2009-12, Vol.172 (1), p.479-484</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</citedby><cites>FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389409010838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22602524$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19625122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, D.K.</creatorcontrib><creatorcontrib>Nicoloso, F.T.</creatorcontrib><creatorcontrib>Schetinger, M.R.C.</creatorcontrib><creatorcontrib>Rossato, L.V.</creatorcontrib><creatorcontrib>Pereira, L.B.</creatorcontrib><creatorcontrib>Castro, G.Y.</creatorcontrib><creatorcontrib>Srivastava, S.</creatorcontrib><creatorcontrib>Tripathi, R.D.</creatorcontrib><title>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The present study was designed to study the process of stress adaptation in roots and shoot of
Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200
μM) for 1–7
d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4
d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion,
Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.</description><subject>Adsorption</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Applied sciences</subject><subject>Ascorbic Acid - chemistry</subject><subject>Catalase</subject><subject>Catalase - chemistry</subject><subject>Catalase - metabolism</subject><subject>Chlorophyll - chemistry</subject><subject>Exact sciences and technology</subject><subject>Hydroponics - methods</subject><subject>Lead</subject><subject>Lead - chemistry</subject><subject>Lead - toxicity</subject><subject>Lipid Peroxidation</subject><subject>Malondialdehyde - chemistry</subject><subject>Models, Statistical</subject><subject>Pollution</subject><subject>Porphobilinogen Synthase - chemistry</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - metabolism</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Zea mays</subject><subject>Zea mays - metabolism</subject><subject>δ-aminolevulinic acid dehydratase</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT-P1DAQxS0E4paDjwByA10WO3Ycu0KnE_-kk2igobEm9uTWq8RZPFlg-fRktRGU18w0v_dm9B5jL6XYSiHN2_12v4M_I8zbWgi3FWYrtXzENtK2qlJKmcdsI5TQlbJOX7FnRHshhGwb_ZRdSWfqRtb1hoWbPKfpd4qQZx6xx0zIRww7yIlGnjLfnWKZDlNOAYbhxO_L9Cvz7wh8hBNxQoxDyvfEjzli4eO0TJiRDwiR01yQ6Dl70sNA-GLd1-zbh_dfbz9Vd18-fr69uauCbsxcGRGh6UOPxtneGu20Dm3TGGiN09J0wUKHIG1UwRlwqu9Co63SUmBnNVh1zd5cfA9l-nFEmv2YKOAwQMbpSF5p66xU7YNgLZw2rT07NhcwlImoYO8PJY1QTl4Kf67B7_1agz_X4IXxSw2L7tV64NiNGP-r1twX4PUKAC259gVySPSPq2sj6qbWC_fuwuGS28-ExVNImAPGVDDMPk7pgVf-AmEYqjA</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Gupta, D.K.</creator><creator>Nicoloso, F.T.</creator><creator>Schetinger, M.R.C.</creator><creator>Rossato, L.V.</creator><creator>Pereira, L.B.</creator><creator>Castro, G.Y.</creator><creator>Srivastava, S.</creator><creator>Tripathi, R.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091215</creationdate><title>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</title><author>Gupta, D.K. ; Nicoloso, F.T. ; Schetinger, M.R.C. ; Rossato, L.V. ; Pereira, L.B. ; Castro, G.Y. ; Srivastava, S. ; Tripathi, R.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-60da5fcfe698f864944c7556a769416bc8abea18d3c96a93fbc5483410eb84a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Applied sciences</topic><topic>Ascorbic Acid - chemistry</topic><topic>Catalase</topic><topic>Catalase - chemistry</topic><topic>Catalase - metabolism</topic><topic>Chlorophyll - chemistry</topic><topic>Exact sciences and technology</topic><topic>Hydroponics - methods</topic><topic>Lead</topic><topic>Lead - chemistry</topic><topic>Lead - toxicity</topic><topic>Lipid Peroxidation</topic><topic>Malondialdehyde - chemistry</topic><topic>Models, Statistical</topic><topic>Pollution</topic><topic>Porphobilinogen Synthase - chemistry</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - metabolism</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Zea mays</topic><topic>Zea mays - metabolism</topic><topic>δ-aminolevulinic acid dehydratase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, D.K.</creatorcontrib><creatorcontrib>Nicoloso, F.T.</creatorcontrib><creatorcontrib>Schetinger, M.R.C.</creatorcontrib><creatorcontrib>Rossato, L.V.</creatorcontrib><creatorcontrib>Pereira, L.B.</creatorcontrib><creatorcontrib>Castro, G.Y.</creatorcontrib><creatorcontrib>Srivastava, S.</creatorcontrib><creatorcontrib>Tripathi, R.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, D.K.</au><au>Nicoloso, F.T.</au><au>Schetinger, M.R.C.</au><au>Rossato, L.V.</au><au>Pereira, L.B.</au><au>Castro, G.Y.</au><au>Srivastava, S.</au><au>Tripathi, R.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2009-12-15</date><risdate>2009</risdate><volume>172</volume><issue>1</issue><spage>479</spage><epage>484</epage><pages>479-484</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>The present study was designed to study the process of stress adaptation in roots and shoot of
Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0–200
μM) for 1–7
d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4
d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion,
Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19625122</pmid><doi>10.1016/j.jhazmat.2009.06.141</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2009-12, Vol.172 (1), p.479-484 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_34898137 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adsorption Antioxidants Antioxidants - metabolism Applied sciences Ascorbic Acid - chemistry Catalase Catalase - chemistry Catalase - metabolism Chlorophyll - chemistry Exact sciences and technology Hydroponics - methods Lead Lead - chemistry Lead - toxicity Lipid Peroxidation Malondialdehyde - chemistry Models, Statistical Pollution Porphobilinogen Synthase - chemistry Seedlings - drug effects Seedlings - metabolism Sulfhydryl Compounds - chemistry Superoxide dismutase Superoxide Dismutase - metabolism Zea mays Zea mays - metabolism δ-aminolevulinic acid dehydratase |
title | Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20defense%20mechanism%20in%20hydroponically%20grown%20Zea%20mays%20seedlings%20under%20moderate%20lead%20stress&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Gupta,%20D.K.&rft.date=2009-12-15&rft.volume=172&rft.issue=1&rft.spage=479&rft.epage=484&rft.pages=479-484&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2009.06.141&rft_dat=%3Cproquest_cross%3E34898137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20946788&rft_id=info:pmid/19625122&rft_els_id=S0304389409010838&rfr_iscdi=true |