MUSIC Algorithm for Vector-Sensors Array Using Biquaternions

In this paper, we use a biquaternion formalism to model vector-sensor signals carrying polarization information. This allows a concise and elegant way of handling signals with eight-dimensional (8-D) vector-valued samples. Using this model, we derive a biquaternionic version of the well-known array...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-09, Vol.55 (9), p.4523-4533
Hauptverfasser: Le Bihan, N., Miron, S., Mars, J.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4533
container_issue 9
container_start_page 4523
container_title IEEE transactions on signal processing
container_volume 55
creator Le Bihan, N.
Miron, S.
Mars, J.I.
description In this paper, we use a biquaternion formalism to model vector-sensor signals carrying polarization information. This allows a concise and elegant way of handling signals with eight-dimensional (8-D) vector-valued samples. Using this model, we derive a biquaternionic version of the well-known array processing MUSIC algorithm, and we show its superiority to classically used long-vector approach. New results on biquaternion valued matrix spectral analysis are presented. Of particular interest for the biquaternion MUSIC (BQ-MUSIC) algorithm is the decomposition of the spectral matrix of the data into orthogonal subspaces. We propose an effective algorithm to compute such an orthogonal decomposition of the observation space via the eigenvalue decomposition (EVD) of a Hermitian biquaternionic matrix by means of a newly defined quantity, the quaternion adjoint matrix. The BQ-MUSIC estimator is derived and simulation results illustrate its performances compared with two other approaches in polarized antenna processing (LV-MUSIC and PSA-MUSIC). The proposed algorithm is shown to be superior in several aspects to the existing approaches. Compared with LV-MUSIC, the BQ-MUSIC algorithm is more robust to modelization errors and coherent noise while it can detect less sources. In comparaison with PSA-MUSIC, our approach exhibits more accurate estimation of direction of arrival (DOA) for a small number of sources, while keeping the polarization information accessible.
doi_str_mv 10.1109/TSP.2007.896067
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34891630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4291863</ieee_id><sourcerecordid>2335827351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-3b454f2f1cbfd9890203c04ce6abf7960e036dc5510f33927316b5503a77e9ce3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsD7WLtwMgoqLaW8mrwm4qcUXVBTairuQxkQj04kmU8F_b8pIBReuEnK_e-65OVl2gKCPEIjBdPLQLwF4vxIMGN_IekgQVADhbDPdgeKCVvxpO9uJ8Q0AESJYLzu_m01uR_mwfvHBta-L3PqQPxrd-lBMTBN9iPkwBPWVz6JrXvIL97FUrQmN803cy7asqqPZ_zl3s9nV5XR0U4zvr29Hw3GhCaJtgeeEEltapOf2WVQCSsAaiDZMzS1Pbg1g9qwpRWAxFiXHiM0pBaw4N0IbvJuddbqvqpbvwS1U-JJeOXkzHMvVW1qHgyDsEyX2tGPfg_9YmtjKhYva1LVqjF9GWVXpV9LMMpEn_5KYVAIxDAk8-gO--WVo0sayYoSWnLCV2qCDdPAxBmPXRhHIVUAyBSRXAckuoNRx_COrola1DarRLv62CUBAmEjcYcc5Y8y6TEqBKobxN_yIlZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864527462</pqid></control><display><type>article</type><title>MUSIC Algorithm for Vector-Sensors Array Using Biquaternions</title><source>IEEE/IET Electronic Library</source><creator>Le Bihan, N. ; Miron, S. ; Mars, J.I.</creator><creatorcontrib>Le Bihan, N. ; Miron, S. ; Mars, J.I.</creatorcontrib><description>In this paper, we use a biquaternion formalism to model vector-sensor signals carrying polarization information. This allows a concise and elegant way of handling signals with eight-dimensional (8-D) vector-valued samples. Using this model, we derive a biquaternionic version of the well-known array processing MUSIC algorithm, and we show its superiority to classically used long-vector approach. New results on biquaternion valued matrix spectral analysis are presented. Of particular interest for the biquaternion MUSIC (BQ-MUSIC) algorithm is the decomposition of the spectral matrix of the data into orthogonal subspaces. We propose an effective algorithm to compute such an orthogonal decomposition of the observation space via the eigenvalue decomposition (EVD) of a Hermitian biquaternionic matrix by means of a newly defined quantity, the quaternion adjoint matrix. The BQ-MUSIC estimator is derived and simulation results illustrate its performances compared with two other approaches in polarized antenna processing (LV-MUSIC and PSA-MUSIC). The proposed algorithm is shown to be superior in several aspects to the existing approaches. Compared with LV-MUSIC, the BQ-MUSIC algorithm is more robust to modelization errors and coherent noise while it can detect less sources. In comparaison with PSA-MUSIC, our approach exhibits more accurate estimation of direction of arrival (DOA) for a small number of sources, while keeping the polarization information accessible.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.896067</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Array signal processing ; Arrays ; Biquaternion MUSIC (BQ-MUSIC) ; Biquaternions and biquaternion-valued matrices ; Computational modeling ; Computer Science ; Decomposition ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; eigenvalue decomposition (EVD) of biquaternionic matrices ; Eigenvalues ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Information Retrieval ; Information, signal and communications theory ; Materials handling ; Matrix decomposition ; Miscellaneous ; Multiple signal classification ; Music ; Noise robustness ; Polarization ; Quaternions ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectra ; Spectral analysis ; Studies ; Telecommunications and information theory ; vector-sensor array processing</subject><ispartof>IEEE transactions on signal processing, 2007-09, Vol.55 (9), p.4523-4533</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-3b454f2f1cbfd9890203c04ce6abf7960e036dc5510f33927316b5503a77e9ce3</citedby><cites>FETCH-LOGICAL-c415t-3b454f2f1cbfd9890203c04ce6abf7960e036dc5510f33927316b5503a77e9ce3</cites><orcidid>0000-0001-6175-6045 ; 0000-0003-4733-6698 ; 0000-0001-6538-7865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4291863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4291863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19010469$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00170946$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Bihan, N.</creatorcontrib><creatorcontrib>Miron, S.</creatorcontrib><creatorcontrib>Mars, J.I.</creatorcontrib><title>MUSIC Algorithm for Vector-Sensors Array Using Biquaternions</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we use a biquaternion formalism to model vector-sensor signals carrying polarization information. This allows a concise and elegant way of handling signals with eight-dimensional (8-D) vector-valued samples. Using this model, we derive a biquaternionic version of the well-known array processing MUSIC algorithm, and we show its superiority to classically used long-vector approach. New results on biquaternion valued matrix spectral analysis are presented. Of particular interest for the biquaternion MUSIC (BQ-MUSIC) algorithm is the decomposition of the spectral matrix of the data into orthogonal subspaces. We propose an effective algorithm to compute such an orthogonal decomposition of the observation space via the eigenvalue decomposition (EVD) of a Hermitian biquaternionic matrix by means of a newly defined quantity, the quaternion adjoint matrix. The BQ-MUSIC estimator is derived and simulation results illustrate its performances compared with two other approaches in polarized antenna processing (LV-MUSIC and PSA-MUSIC). The proposed algorithm is shown to be superior in several aspects to the existing approaches. Compared with LV-MUSIC, the BQ-MUSIC algorithm is more robust to modelization errors and coherent noise while it can detect less sources. In comparaison with PSA-MUSIC, our approach exhibits more accurate estimation of direction of arrival (DOA) for a small number of sources, while keeping the polarization information accessible.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Biquaternion MUSIC (BQ-MUSIC)</subject><subject>Biquaternions and biquaternion-valued matrices</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>eigenvalue decomposition (EVD) of biquaternionic matrices</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Information Retrieval</subject><subject>Information, signal and communications theory</subject><subject>Materials handling</subject><subject>Matrix decomposition</subject><subject>Miscellaneous</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Noise robustness</subject><subject>Polarization</subject><subject>Quaternions</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Spectral analysis</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>vector-sensor array processing</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLAzEUhQdRsD7WLtwMgoqLaW8mrwm4qcUXVBTairuQxkQj04kmU8F_b8pIBReuEnK_e-65OVl2gKCPEIjBdPLQLwF4vxIMGN_IekgQVADhbDPdgeKCVvxpO9uJ8Q0AESJYLzu_m01uR_mwfvHBta-L3PqQPxrd-lBMTBN9iPkwBPWVz6JrXvIL97FUrQmN803cy7asqqPZ_zl3s9nV5XR0U4zvr29Hw3GhCaJtgeeEEltapOf2WVQCSsAaiDZMzS1Pbg1g9qwpRWAxFiXHiM0pBaw4N0IbvJuddbqvqpbvwS1U-JJeOXkzHMvVW1qHgyDsEyX2tGPfg_9YmtjKhYva1LVqjF9GWVXpV9LMMpEn_5KYVAIxDAk8-gO--WVo0sayYoSWnLCV2qCDdPAxBmPXRhHIVUAyBSRXAckuoNRx_COrola1DarRLv62CUBAmEjcYcc5Y8y6TEqBKobxN_yIlZc</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Le Bihan, N.</creator><creator>Miron, S.</creator><creator>Mars, J.I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6175-6045</orcidid><orcidid>https://orcid.org/0000-0003-4733-6698</orcidid><orcidid>https://orcid.org/0000-0001-6538-7865</orcidid></search><sort><creationdate>20070901</creationdate><title>MUSIC Algorithm for Vector-Sensors Array Using Biquaternions</title><author>Le Bihan, N. ; Miron, S. ; Mars, J.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-3b454f2f1cbfd9890203c04ce6abf7960e036dc5510f33927316b5503a77e9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Biquaternion MUSIC (BQ-MUSIC)</topic><topic>Biquaternions and biquaternion-valued matrices</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>eigenvalue decomposition (EVD) of biquaternionic matrices</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Information Retrieval</topic><topic>Information, signal and communications theory</topic><topic>Materials handling</topic><topic>Matrix decomposition</topic><topic>Miscellaneous</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Noise robustness</topic><topic>Polarization</topic><topic>Quaternions</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Spectral analysis</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>vector-sensor array processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Bihan, N.</creatorcontrib><creatorcontrib>Miron, S.</creatorcontrib><creatorcontrib>Mars, J.I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le Bihan, N.</au><au>Miron, S.</au><au>Mars, J.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MUSIC Algorithm for Vector-Sensors Array Using Biquaternions</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-09-01</date><risdate>2007</risdate><volume>55</volume><issue>9</issue><spage>4523</spage><epage>4533</epage><pages>4523-4533</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we use a biquaternion formalism to model vector-sensor signals carrying polarization information. This allows a concise and elegant way of handling signals with eight-dimensional (8-D) vector-valued samples. Using this model, we derive a biquaternionic version of the well-known array processing MUSIC algorithm, and we show its superiority to classically used long-vector approach. New results on biquaternion valued matrix spectral analysis are presented. Of particular interest for the biquaternion MUSIC (BQ-MUSIC) algorithm is the decomposition of the spectral matrix of the data into orthogonal subspaces. We propose an effective algorithm to compute such an orthogonal decomposition of the observation space via the eigenvalue decomposition (EVD) of a Hermitian biquaternionic matrix by means of a newly defined quantity, the quaternion adjoint matrix. The BQ-MUSIC estimator is derived and simulation results illustrate its performances compared with two other approaches in polarized antenna processing (LV-MUSIC and PSA-MUSIC). The proposed algorithm is shown to be superior in several aspects to the existing approaches. Compared with LV-MUSIC, the BQ-MUSIC algorithm is more robust to modelization errors and coherent noise while it can detect less sources. In comparaison with PSA-MUSIC, our approach exhibits more accurate estimation of direction of arrival (DOA) for a small number of sources, while keeping the polarization information accessible.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.896067</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6175-6045</orcidid><orcidid>https://orcid.org/0000-0003-4733-6698</orcidid><orcidid>https://orcid.org/0000-0001-6538-7865</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-09, Vol.55 (9), p.4523-4533
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_34891630
source IEEE/IET Electronic Library
subjects Algorithms
Applied sciences
Array signal processing
Arrays
Biquaternion MUSIC (BQ-MUSIC)
Biquaternions and biquaternion-valued matrices
Computational modeling
Computer Science
Decomposition
Detection, estimation, filtering, equalization, prediction
Direction of arrival estimation
eigenvalue decomposition (EVD) of biquaternionic matrices
Eigenvalues
Eigenvalues and eigenfunctions
Exact sciences and technology
Information Retrieval
Information, signal and communications theory
Materials handling
Matrix decomposition
Miscellaneous
Multiple signal classification
Music
Noise robustness
Polarization
Quaternions
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Spectra
Spectral analysis
Studies
Telecommunications and information theory
vector-sensor array processing
title MUSIC Algorithm for Vector-Sensors Array Using Biquaternions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MUSIC%20Algorithm%20for%20Vector-Sensors%20Array%20Using%20Biquaternions&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Le%20Bihan,%20N.&rft.date=2007-09-01&rft.volume=55&rft.issue=9&rft.spage=4523&rft.epage=4533&rft.pages=4523-4533&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.896067&rft_dat=%3Cproquest_RIE%3E2335827351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864527462&rft_id=info:pmid/&rft_ieee_id=4291863&rfr_iscdi=true