Malicious web content detection by machine learning
The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise it...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2010, Vol.37 (1), p.55-60 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Expert systems with applications |
container_volume | 37 |
creator | Hou, Yung-Tsung Chang, Yimeng Chen, Tsuhan Laih, Chi-Sung Chen, Chia-Mei |
description | The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise itself easily through obfuscation or transformation, which makes the detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflaged malicious HTML codes. Therefore, our paper proposes a malicious web page detection using the technique of machine learning. Our study analyzes the characteristic of a malicious webpage systematically and presents important features for machine learning. Experimental results demonstrate that our method is resilient to code obfuscations and can correctly determine whether a webpage is malicious or not. |
doi_str_mv | 10.1016/j.eswa.2009.05.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34881505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741740900445X</els_id><sourcerecordid>21071708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c20f45139ba689622dc86b3dc2f61a42d3d6f5f94a926bbfe9e096591919d41b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuXjDzBlQiwJZzt2YokFIb6kIhaYLce-gKvUKXYK6r_HVZmLbrjleV_dPYRcUKgoUHm9qDD9mIoBqApEBYwfkBltG17KRvFDMgMlmrKmTX1MTlJaANAGoJkR_mIGb_24TsUPdoUdw4RhKhxOaCc_hqLbFEtjP33AYkATgw8fZ-SoN0PC8799St4f7t_unsr56-Pz3e28tFyJqbQM-lpQrjojWyUZc7aVHXeW9ZKamjnuZC96VRvFZNf1qBCUFIrmcTXt-Cm53PWu4vi1xjTppU8Wh8EEzAdrXrctFSD-BRmFJv_bZvBqL5ghCpIDbzLKdqiNY0oRe72KfmniRlPQW-d6obfO9da5BqGz8xy62YUwa_n2GHWyHoNF52P2qd3o98V_ASjsiQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701063037</pqid></control><display><type>article</type><title>Malicious web content detection by machine learning</title><source>Elsevier ScienceDirect Journals</source><creator>Hou, Yung-Tsung ; Chang, Yimeng ; Chen, Tsuhan ; Laih, Chi-Sung ; Chen, Chia-Mei</creator><creatorcontrib>Hou, Yung-Tsung ; Chang, Yimeng ; Chen, Tsuhan ; Laih, Chi-Sung ; Chen, Chia-Mei</creatorcontrib><description>The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise itself easily through obfuscation or transformation, which makes the detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflaged malicious HTML codes. Therefore, our paper proposes a malicious web page detection using the technique of machine learning. Our study analyzes the characteristic of a malicious webpage systematically and presents important features for machine learning. Experimental results demonstrate that our method is resilient to code obfuscations and can correctly determine whether a webpage is malicious or not.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.05.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dynamic HTML ; Dynamical systems ; Dynamics ; Expert systems ; HTML ; HyperText Markup Language ; Machine learning ; Malicious webpage ; Software packages ; Transformations</subject><ispartof>Expert systems with applications, 2010, Vol.37 (1), p.55-60</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c20f45139ba689622dc86b3dc2f61a42d3d6f5f94a926bbfe9e096591919d41b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095741740900445X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hou, Yung-Tsung</creatorcontrib><creatorcontrib>Chang, Yimeng</creatorcontrib><creatorcontrib>Chen, Tsuhan</creatorcontrib><creatorcontrib>Laih, Chi-Sung</creatorcontrib><creatorcontrib>Chen, Chia-Mei</creatorcontrib><title>Malicious web content detection by machine learning</title><title>Expert systems with applications</title><description>The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise itself easily through obfuscation or transformation, which makes the detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflaged malicious HTML codes. Therefore, our paper proposes a malicious web page detection using the technique of machine learning. Our study analyzes the characteristic of a malicious webpage systematically and presents important features for machine learning. Experimental results demonstrate that our method is resilient to code obfuscations and can correctly determine whether a webpage is malicious or not.</description><subject>Dynamic HTML</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Expert systems</subject><subject>HTML</subject><subject>HyperText Markup Language</subject><subject>Machine learning</subject><subject>Malicious webpage</subject><subject>Software packages</subject><subject>Transformations</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEuXjDzBlQiwJZzt2YokFIb6kIhaYLce-gKvUKXYK6r_HVZmLbrjleV_dPYRcUKgoUHm9qDD9mIoBqApEBYwfkBltG17KRvFDMgMlmrKmTX1MTlJaANAGoJkR_mIGb_24TsUPdoUdw4RhKhxOaCc_hqLbFEtjP33AYkATgw8fZ-SoN0PC8799St4f7t_unsr56-Pz3e28tFyJqbQM-lpQrjojWyUZc7aVHXeW9ZKamjnuZC96VRvFZNf1qBCUFIrmcTXt-Cm53PWu4vi1xjTppU8Wh8EEzAdrXrctFSD-BRmFJv_bZvBqL5ghCpIDbzLKdqiNY0oRe72KfmniRlPQW-d6obfO9da5BqGz8xy62YUwa_n2GHWyHoNF52P2qd3o98V_ASjsiQg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Hou, Yung-Tsung</creator><creator>Chang, Yimeng</creator><creator>Chen, Tsuhan</creator><creator>Laih, Chi-Sung</creator><creator>Chen, Chia-Mei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>2010</creationdate><title>Malicious web content detection by machine learning</title><author>Hou, Yung-Tsung ; Chang, Yimeng ; Chen, Tsuhan ; Laih, Chi-Sung ; Chen, Chia-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c20f45139ba689622dc86b3dc2f61a42d3d6f5f94a926bbfe9e096591919d41b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dynamic HTML</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Expert systems</topic><topic>HTML</topic><topic>HyperText Markup Language</topic><topic>Machine learning</topic><topic>Malicious webpage</topic><topic>Software packages</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yung-Tsung</creatorcontrib><creatorcontrib>Chang, Yimeng</creatorcontrib><creatorcontrib>Chen, Tsuhan</creatorcontrib><creatorcontrib>Laih, Chi-Sung</creatorcontrib><creatorcontrib>Chen, Chia-Mei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yung-Tsung</au><au>Chang, Yimeng</au><au>Chen, Tsuhan</au><au>Laih, Chi-Sung</au><au>Chen, Chia-Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malicious web content detection by machine learning</atitle><jtitle>Expert systems with applications</jtitle><date>2010</date><risdate>2010</risdate><volume>37</volume><issue>1</issue><spage>55</spage><epage>60</epage><pages>55-60</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise itself easily through obfuscation or transformation, which makes the detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflaged malicious HTML codes. Therefore, our paper proposes a malicious web page detection using the technique of machine learning. Our study analyzes the characteristic of a malicious webpage systematically and presents important features for machine learning. Experimental results demonstrate that our method is resilient to code obfuscations and can correctly determine whether a webpage is malicious or not.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.05.023</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2010, Vol.37 (1), p.55-60 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_34881505 |
source | Elsevier ScienceDirect Journals |
subjects | Dynamic HTML Dynamical systems Dynamics Expert systems HTML HyperText Markup Language Machine learning Malicious webpage Software packages Transformations |
title | Malicious web content detection by machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malicious%20web%20content%20detection%20by%20machine%20learning&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Hou,%20Yung-Tsung&rft.date=2010&rft.volume=37&rft.issue=1&rft.spage=55&rft.epage=60&rft.pages=55-60&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.05.023&rft_dat=%3Cproquest_cross%3E21071708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701063037&rft_id=info:pmid/&rft_els_id=S095741740900445X&rfr_iscdi=true |