Modeling of multifilament PET fiber melt-spinning

A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2008-11, Vol.110 (4), p.2153-2163
Hauptverfasser: Jeon, Young-Pyo, Cox, Christopher L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2163
container_issue 4
container_start_page 2153
container_title Journal of applied polymer science
container_volume 110
creator Jeon, Young-Pyo
Cox, Christopher L
description A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.
doi_str_mv 10.1002/app.28827
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34876826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34876826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</originalsourceid><addsrcrecordid>eNp10DtPwzAUBWALgUR5DPwCsoDEkOJrx7E9AuIlFahEq7JZbmJXBueBnQr49wQCbEwe7neOrIPQAeAxYExOdduOiRCEb6ARYMnTLCdiE436G6RCSraNdmJ8xhiA4XyE4K4pjXf1KmlsUq1956zzujJ1l0wvZ4l1SxOSyvguja2r6x7uoS2rfTT7P-8uml9dzi5u0snD9e3F2SQtMiZ4qollJeXYChBLK8Fayi0xpcwIN0xoCVwzyVipaVaKJWRLUxQUipLnFIhhdBcdD71taF7XJnaqcrEw3uvaNOuoaCZ4Lkjew5MBFqGJMRir2uAqHT4UYPU1iupHUd-j9Pbop1THQnsbdF24-BcgWGAmiOzd6eDenDcf_xeqs-n0tzkdEi525v0vocOLyjnlTC3ur5VY5BKezidq1vvDwVvdKL0K_S_mjwQDxcBojllGPwEtRodq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34876826</pqid></control><display><type>article</type><title>Modeling of multifilament PET fiber melt-spinning</title><source>Wiley Journals</source><creator>Jeon, Young-Pyo ; Cox, Christopher L</creator><creatorcontrib>Jeon, Young-Pyo ; Cox, Christopher L</creatorcontrib><description>A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.28827</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; computer modeling ; crystallization ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; melt-spinning ; multifilament ; polyesters ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2008-11, Vol.110 (4), p.2153-2163</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</citedby><cites>FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.28827$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.28827$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20805829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Young-Pyo</creatorcontrib><creatorcontrib>Cox, Christopher L</creatorcontrib><title>Modeling of multifilament PET fiber melt-spinning</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.</description><subject>Applied sciences</subject><subject>computer modeling</subject><subject>crystallization</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>melt-spinning</subject><subject>multifilament</subject><subject>polyesters</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUBWALgUR5DPwCsoDEkOJrx7E9AuIlFahEq7JZbmJXBueBnQr49wQCbEwe7neOrIPQAeAxYExOdduOiRCEb6ARYMnTLCdiE436G6RCSraNdmJ8xhiA4XyE4K4pjXf1KmlsUq1956zzujJ1l0wvZ4l1SxOSyvguja2r6x7uoS2rfTT7P-8uml9dzi5u0snD9e3F2SQtMiZ4qollJeXYChBLK8Fayi0xpcwIN0xoCVwzyVipaVaKJWRLUxQUipLnFIhhdBcdD71taF7XJnaqcrEw3uvaNOuoaCZ4Lkjew5MBFqGJMRir2uAqHT4UYPU1iupHUd-j9Pbop1THQnsbdF24-BcgWGAmiOzd6eDenDcf_xeqs-n0tzkdEi525v0vocOLyjnlTC3ur5VY5BKezidq1vvDwVvdKL0K_S_mjwQDxcBojllGPwEtRodq</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Jeon, Young-Pyo</creator><creator>Cox, Christopher L</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081115</creationdate><title>Modeling of multifilament PET fiber melt-spinning</title><author>Jeon, Young-Pyo ; Cox, Christopher L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>computer modeling</topic><topic>crystallization</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>melt-spinning</topic><topic>multifilament</topic><topic>polyesters</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Young-Pyo</creatorcontrib><creatorcontrib>Cox, Christopher L</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Young-Pyo</au><au>Cox, Christopher L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of multifilament PET fiber melt-spinning</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2008-11-15</date><risdate>2008</risdate><volume>110</volume><issue>4</issue><spage>2153</spage><epage>2163</epage><pages>2153-2163</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.28827</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2008-11, Vol.110 (4), p.2153-2163
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_34876826
source Wiley Journals
subjects Applied sciences
computer modeling
crystallization
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
melt-spinning
multifilament
polyesters
Polymer industry, paints, wood
Technology of polymers
title Modeling of multifilament PET fiber melt-spinning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20multifilament%20PET%20fiber%20melt-spinning&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Jeon,%20Young-Pyo&rft.date=2008-11-15&rft.volume=110&rft.issue=4&rft.spage=2153&rft.epage=2163&rft.pages=2153-2163&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.28827&rft_dat=%3Cproquest_cross%3E34876826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34876826&rft_id=info:pmid/&rfr_iscdi=true