Modeling of multifilament PET fiber melt-spinning
A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling ai...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2008-11, Vol.110 (4), p.2153-2163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2163 |
---|---|
container_issue | 4 |
container_start_page | 2153 |
container_title | Journal of applied polymer science |
container_volume | 110 |
creator | Jeon, Young-Pyo Cox, Christopher L |
description | A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements. |
doi_str_mv | 10.1002/app.28827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34876826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34876826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</originalsourceid><addsrcrecordid>eNp10DtPwzAUBWALgUR5DPwCsoDEkOJrx7E9AuIlFahEq7JZbmJXBueBnQr49wQCbEwe7neOrIPQAeAxYExOdduOiRCEb6ARYMnTLCdiE436G6RCSraNdmJ8xhiA4XyE4K4pjXf1KmlsUq1956zzujJ1l0wvZ4l1SxOSyvguja2r6x7uoS2rfTT7P-8uml9dzi5u0snD9e3F2SQtMiZ4qollJeXYChBLK8Fayi0xpcwIN0xoCVwzyVipaVaKJWRLUxQUipLnFIhhdBcdD71taF7XJnaqcrEw3uvaNOuoaCZ4Lkjew5MBFqGJMRir2uAqHT4UYPU1iupHUd-j9Pbop1THQnsbdF24-BcgWGAmiOzd6eDenDcf_xeqs-n0tzkdEi525v0vocOLyjnlTC3ur5VY5BKezidq1vvDwVvdKL0K_S_mjwQDxcBojllGPwEtRodq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34876826</pqid></control><display><type>article</type><title>Modeling of multifilament PET fiber melt-spinning</title><source>Wiley Journals</source><creator>Jeon, Young-Pyo ; Cox, Christopher L</creator><creatorcontrib>Jeon, Young-Pyo ; Cox, Christopher L</creatorcontrib><description>A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.28827</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; computer modeling ; crystallization ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; melt-spinning ; multifilament ; polyesters ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2008-11, Vol.110 (4), p.2153-2163</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</citedby><cites>FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.28827$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.28827$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20805829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Young-Pyo</creatorcontrib><creatorcontrib>Cox, Christopher L</creatorcontrib><title>Modeling of multifilament PET fiber melt-spinning</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.</description><subject>Applied sciences</subject><subject>computer modeling</subject><subject>crystallization</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>melt-spinning</subject><subject>multifilament</subject><subject>polyesters</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUBWALgUR5DPwCsoDEkOJrx7E9AuIlFahEq7JZbmJXBueBnQr49wQCbEwe7neOrIPQAeAxYExOdduOiRCEb6ARYMnTLCdiE436G6RCSraNdmJ8xhiA4XyE4K4pjXf1KmlsUq1956zzujJ1l0wvZ4l1SxOSyvguja2r6x7uoS2rfTT7P-8uml9dzi5u0snD9e3F2SQtMiZ4qollJeXYChBLK8Fayi0xpcwIN0xoCVwzyVipaVaKJWRLUxQUipLnFIhhdBcdD71taF7XJnaqcrEw3uvaNOuoaCZ4Lkjew5MBFqGJMRir2uAqHT4UYPU1iupHUd-j9Pbop1THQnsbdF24-BcgWGAmiOzd6eDenDcf_xeqs-n0tzkdEi525v0vocOLyjnlTC3ur5VY5BKezidq1vvDwVvdKL0K_S_mjwQDxcBojllGPwEtRodq</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Jeon, Young-Pyo</creator><creator>Cox, Christopher L</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081115</creationdate><title>Modeling of multifilament PET fiber melt-spinning</title><author>Jeon, Young-Pyo ; Cox, Christopher L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4587-a2f5d370f818bf91ff37f2ed9427e58a917a5955da34d8b14becc31cd76312e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>computer modeling</topic><topic>crystallization</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>melt-spinning</topic><topic>multifilament</topic><topic>polyesters</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Young-Pyo</creatorcontrib><creatorcontrib>Cox, Christopher L</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Young-Pyo</au><au>Cox, Christopher L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of multifilament PET fiber melt-spinning</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2008-11-15</date><risdate>2008</risdate><volume>110</volume><issue>4</issue><spage>2153</spage><epage>2163</epage><pages>2153-2163</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>A fundamental issue in the polymer fiber melt-spinning process is the control of final properties. Most available melt-spinning models simulate only a single fiber, providing an incomplete representation of the actual industrial multifilament process. Variations across the fiber bundle in cooling air velocity and temperature result in nonuniformity in fiber properties. Simulation can provide insight into this cause-and-effect relationship and lead to better process design to control differences between fibers. The few multifilament models in existence typically use a Newtonian constitutive model for the polymer, failing to capture nonlinear effects which often play a significant role in the process. Experimental validation of multifilament simulation is lacking. We present a nonisothermal multifilament spinning model, applicable for a variety of polymer and process conditions. The model combines the flow-enhanced crystallization (FEC) fiber spinning model of McHugh et al. with a generalization of Dutta's multifilament model. The model predicts fiber properties such as stress, degree of crystallinity, fiber radius and temperature as a function of distance from the spinneret, along with quench air cross velocity and temperature throughout the fiber bundle region. The McHugh FEC model for single fiber spinning, based on a modified Giesekus constitutive model and Avrami-type crystallization kinetics, has been experimentally validated. In this work we show that results of the multifilament quench air model compare favorably to experimental measurements.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.28827</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2008-11, Vol.110 (4), p.2153-2163 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_34876826 |
source | Wiley Journals |
subjects | Applied sciences computer modeling crystallization Exact sciences and technology Fibers and threads Forms of application and semi-finished materials melt-spinning multifilament polyesters Polymer industry, paints, wood Technology of polymers |
title | Modeling of multifilament PET fiber melt-spinning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20multifilament%20PET%20fiber%20melt-spinning&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Jeon,%20Young-Pyo&rft.date=2008-11-15&rft.volume=110&rft.issue=4&rft.spage=2153&rft.epage=2163&rft.pages=2153-2163&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.28827&rft_dat=%3Cproquest_cross%3E34876826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34876826&rft_id=info:pmid/&rfr_iscdi=true |