Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory

A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-11, Vol.385 (1-2), p.166-174
Hauptverfasser: SVOBODA, J, FISCHER, F. D, FRATZL, P, KOZESCHNIK, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 1-2
container_start_page 166
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 385
creator SVOBODA, J
FISCHER, F. D
FRATZL, P
KOZESCHNIK, E
description A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.
doi_str_mv 10.1016/j.msea.2004.06.018
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_34876646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34876646</sourcerecordid><originalsourceid>FETCH-LOGICAL-p276t-b3825598d8b441f1be0fa384ca3e27b96f5af0bb79f794a52753ec230daf90473</originalsourceid><addsrcrecordid>eNqNkEtLAzEYRYMoWKt_wFU2upsxr8nDnRQfhYqbuh4y6RcndR5xkiL99xbsXleXC4cD9yJ0TUlJCZV327JPYEtGiCiJLAnVJ2hGteKFMFyeohkxjBYVMfwcXaS0JYRQQaoZal7HDXRdGD7w6PFnGCAHl3AYcL_rcijc2MdxgCEfe2xtApz2KUOf8HfILU6xhSk42-E4gQsxZJsh4eU9XrcwTvtLdOZtl-DqmHP0_vS4XrwUq7fn5eJhVUSmZC4arllVGb3RjRDU0waIt1wLZzkw1RjpK-tJ0yjjlRG2Yqri4BgnG-sNEYrP0e2vN07j1w5SrvuQ3GGcHWDcpZoLraQU8k-QaWW4UOIfIKNcSHYAb46gTYcj_GQHF1Idp9DbaV9TSQ9GZvgPpjGCxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28213462</pqid></control><display><type>article</type><title>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</title><source>Elsevier ScienceDirect Journals Complete</source><creator>SVOBODA, J ; FISCHER, F. D ; FRATZL, P ; KOZESCHNIK, E</creator><creatorcontrib>SVOBODA, J ; FISCHER, F. D ; FRATZL, P ; KOZESCHNIK, E</creatorcontrib><description>A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2004.06.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitation</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2004-11, Vol.385 (1-2), p.166-174</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16179329$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SVOBODA, J</creatorcontrib><creatorcontrib>FISCHER, F. D</creatorcontrib><creatorcontrib>FRATZL, P</creatorcontrib><creatorcontrib>KOZESCHNIK, E</creatorcontrib><title>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEYRYMoWKt_wFU2upsxr8nDnRQfhYqbuh4y6RcndR5xkiL99xbsXleXC4cD9yJ0TUlJCZV327JPYEtGiCiJLAnVJ2hGteKFMFyeohkxjBYVMfwcXaS0JYRQQaoZal7HDXRdGD7w6PFnGCAHl3AYcL_rcijc2MdxgCEfe2xtApz2KUOf8HfILU6xhSk42-E4gQsxZJsh4eU9XrcwTvtLdOZtl-DqmHP0_vS4XrwUq7fn5eJhVUSmZC4arllVGb3RjRDU0waIt1wLZzkw1RjpK-tJ0yjjlRG2Yqri4BgnG-sNEYrP0e2vN07j1w5SrvuQ3GGcHWDcpZoLraQU8k-QaWW4UOIfIKNcSHYAb46gTYcj_GQHF1Idp9DbaV9TSQ9GZvgPpjGCxQ</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>SVOBODA, J</creator><creator>FISCHER, F. D</creator><creator>FRATZL, P</creator><creator>KOZESCHNIK, E</creator><general>Elsevier</general><scope>IQODW</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope></search><sort><creationdate>20041115</creationdate><title>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</title><author>SVOBODA, J ; FISCHER, F. D ; FRATZL, P ; KOZESCHNIK, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p276t-b3825598d8b441f1be0fa384ca3e27b96f5af0bb79f794a52753ec230daf90473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SVOBODA, J</creatorcontrib><creatorcontrib>FISCHER, F. D</creatorcontrib><creatorcontrib>FRATZL, P</creatorcontrib><creatorcontrib>KOZESCHNIK, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SVOBODA, J</au><au>FISCHER, F. D</au><au>FRATZL, P</au><au>KOZESCHNIK, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2004-11-15</date><risdate>2004</risdate><volume>385</volume><issue>1-2</issue><spage>166</spage><epage>174</epage><pages>166-174</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.msea.2004.06.018</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2004-11, Vol.385 (1-2), p.166-174
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_34876646
source Elsevier ScienceDirect Journals Complete
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitation
title Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20kinetics%20in%20multi-component%20multi-phase%20systems%20with%20spherical%20precipitates%20I:%20Theory&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=SVOBODA,%20J&rft.date=2004-11-15&rft.volume=385&rft.issue=1-2&rft.spage=166&rft.epage=174&rft.pages=166-174&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2004.06.018&rft_dat=%3Cproquest_pasca%3E34876646%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28213462&rft_id=info:pmid/&rfr_iscdi=true