Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory
A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-11, Vol.385 (1-2), p.166-174 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 1-2 |
container_start_page | 166 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 385 |
creator | SVOBODA, J FISCHER, F. D FRATZL, P KOZESCHNIK, E |
description | A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix. |
doi_str_mv | 10.1016/j.msea.2004.06.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_34876646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34876646</sourcerecordid><originalsourceid>FETCH-LOGICAL-p276t-b3825598d8b441f1be0fa384ca3e27b96f5af0bb79f794a52753ec230daf90473</originalsourceid><addsrcrecordid>eNqNkEtLAzEYRYMoWKt_wFU2upsxr8nDnRQfhYqbuh4y6RcndR5xkiL99xbsXleXC4cD9yJ0TUlJCZV327JPYEtGiCiJLAnVJ2hGteKFMFyeohkxjBYVMfwcXaS0JYRQQaoZal7HDXRdGD7w6PFnGCAHl3AYcL_rcijc2MdxgCEfe2xtApz2KUOf8HfILU6xhSk42-E4gQsxZJsh4eU9XrcwTvtLdOZtl-DqmHP0_vS4XrwUq7fn5eJhVUSmZC4arllVGb3RjRDU0waIt1wLZzkw1RjpK-tJ0yjjlRG2Yqri4BgnG-sNEYrP0e2vN07j1w5SrvuQ3GGcHWDcpZoLraQU8k-QaWW4UOIfIKNcSHYAb46gTYcj_GQHF1Idp9DbaV9TSQ9GZvgPpjGCxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28213462</pqid></control><display><type>article</type><title>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</title><source>Elsevier ScienceDirect Journals Complete</source><creator>SVOBODA, J ; FISCHER, F. D ; FRATZL, P ; KOZESCHNIK, E</creator><creatorcontrib>SVOBODA, J ; FISCHER, F. D ; FRATZL, P ; KOZESCHNIK, E</creatorcontrib><description>A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2004.06.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitation</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2004-11, Vol.385 (1-2), p.166-174</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16179329$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SVOBODA, J</creatorcontrib><creatorcontrib>FISCHER, F. D</creatorcontrib><creatorcontrib>FRATZL, P</creatorcontrib><creatorcontrib>KOZESCHNIK, E</creatorcontrib><title>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEYRYMoWKt_wFU2upsxr8nDnRQfhYqbuh4y6RcndR5xkiL99xbsXleXC4cD9yJ0TUlJCZV327JPYEtGiCiJLAnVJ2hGteKFMFyeohkxjBYVMfwcXaS0JYRQQaoZal7HDXRdGD7w6PFnGCAHl3AYcL_rcijc2MdxgCEfe2xtApz2KUOf8HfILU6xhSk42-E4gQsxZJsh4eU9XrcwTvtLdOZtl-DqmHP0_vS4XrwUq7fn5eJhVUSmZC4arllVGb3RjRDU0waIt1wLZzkw1RjpK-tJ0yjjlRG2Yqri4BgnG-sNEYrP0e2vN07j1w5SrvuQ3GGcHWDcpZoLraQU8k-QaWW4UOIfIKNcSHYAb46gTYcj_GQHF1Idp9DbaV9TSQ9GZvgPpjGCxQ</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>SVOBODA, J</creator><creator>FISCHER, F. D</creator><creator>FRATZL, P</creator><creator>KOZESCHNIK, E</creator><general>Elsevier</general><scope>IQODW</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope></search><sort><creationdate>20041115</creationdate><title>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</title><author>SVOBODA, J ; FISCHER, F. D ; FRATZL, P ; KOZESCHNIK, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p276t-b3825598d8b441f1be0fa384ca3e27b96f5af0bb79f794a52753ec230daf90473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SVOBODA, J</creatorcontrib><creatorcontrib>FISCHER, F. D</creatorcontrib><creatorcontrib>FRATZL, P</creatorcontrib><creatorcontrib>KOZESCHNIK, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SVOBODA, J</au><au>FISCHER, F. D</au><au>FRATZL, P</au><au>KOZESCHNIK, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2004-11-15</date><risdate>2004</risdate><volume>385</volume><issue>1-2</issue><spage>166</spage><epage>174</epage><pages>166-174</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A new model for the evolution of the precipitate structure derived by means of application of the thermodynamic extremum principle is presented. The model describes the evolution of the radii and of the chemical composition of individual precipitates of different phases in the multi-component system. In connection with a proper theory of nucleation, the model is able to describe the evolution of the precipitate structure in the classical stages of nucleation, growth and coarsening as well as interaction of precipitates of different phases, of different chemical composition and of different sizes via diffusion in the matrix.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.msea.2004.06.018</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2004-11, Vol.385 (1-2), p.166-174 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_34876646 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Precipitation |
title | Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20kinetics%20in%20multi-component%20multi-phase%20systems%20with%20spherical%20precipitates%20I:%20Theory&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=SVOBODA,%20J&rft.date=2004-11-15&rft.volume=385&rft.issue=1-2&rft.spage=166&rft.epage=174&rft.pages=166-174&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2004.06.018&rft_dat=%3Cproquest_pasca%3E34876646%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28213462&rft_id=info:pmid/&rfr_iscdi=true |