Kinetic modeling of high pressure autothermal reforming

Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). In this companion paper a 1-D, heterogeneou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010-01, Vol.195 (2), p.553-558
Hauptverfasser: Reese, Mark A., Turn, Scott Q., Cui, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 2
container_start_page 553
container_title Journal of power sources
container_volume 195
creator Reese, Mark A.
Turn, Scott Q.
Cui, Hong
description Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O 2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50 bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50 bar have higher S/C ratios and produce higher H 2(out)/O 2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O 2/C.
doi_str_mv 10.1016/j.jpowsour.2009.07.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34873108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309012117</els_id><sourcerecordid>21063863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwF1AW2BKe7cR2NxDiS1RigdlynJfWVRIHOwHx70nVwtrpLee-q3sIuaSQUaDiZpNtev8d_RgyBrDIQGbA6RGZUSV5ymRRHJMZcKlSKQt-Ss5i3AAApRJmRL66Dgdnk9ZX2Lhulfg6WbvVOukDxjgGTMw4-GGNoTVNErD2oZ2wc3JSmybixf7Oycfjw_v9c7p8e3q5v1umNod8SKksq1xVSFlhUIpcWAZKcQBmTZkzKbDkhhmTK1XQ0gKgBCyEgsKwCgvkc3K9-9sH_zliHHTrosWmMR36MWqeTyMpqIMgoyC4EnwCxQ60wcc4DdJ9cK0JP5qC3grVG_0nVG-FapB6EjoFr_YNJlrT1MF01sX_NGNA1WKx5W53HE5evhwGHa3DzmLlAtpBV94dqvoFQ9-PRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21063863</pqid></control><display><type>article</type><title>Kinetic modeling of high pressure autothermal reforming</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Reese, Mark A. ; Turn, Scott Q. ; Cui, Hong</creator><creatorcontrib>Reese, Mark A. ; Turn, Scott Q. ; Cui, Hong</creatorcontrib><description>Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O 2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50 bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50 bar have higher S/C ratios and produce higher H 2(out)/O 2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O 2/C.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.07.031</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Autothermal reforming ; Energy ; Exact sciences and technology ; Fuels ; High pressure ; Hydrogen ; Hydrogen production ; Kinetic modeling ; Methane</subject><ispartof>Journal of power sources, 2010-01, Vol.195 (2), p.553-558</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</citedby><cites>FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2009.07.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22018991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reese, Mark A.</creatorcontrib><creatorcontrib>Turn, Scott Q.</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><title>Kinetic modeling of high pressure autothermal reforming</title><title>Journal of power sources</title><description>Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O 2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50 bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50 bar have higher S/C ratios and produce higher H 2(out)/O 2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O 2/C.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Autothermal reforming</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>High pressure</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Kinetic modeling</subject><subject>Methane</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwF1AW2BKe7cR2NxDiS1RigdlynJfWVRIHOwHx70nVwtrpLee-q3sIuaSQUaDiZpNtev8d_RgyBrDIQGbA6RGZUSV5ymRRHJMZcKlSKQt-Ss5i3AAApRJmRL66Dgdnk9ZX2Lhulfg6WbvVOukDxjgGTMw4-GGNoTVNErD2oZ2wc3JSmybixf7Oycfjw_v9c7p8e3q5v1umNod8SKksq1xVSFlhUIpcWAZKcQBmTZkzKbDkhhmTK1XQ0gKgBCyEgsKwCgvkc3K9-9sH_zliHHTrosWmMR36MWqeTyMpqIMgoyC4EnwCxQ60wcc4DdJ9cK0JP5qC3grVG_0nVG-FapB6EjoFr_YNJlrT1MF01sX_NGNA1WKx5W53HE5evhwGHa3DzmLlAtpBV94dqvoFQ9-PRg</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Reese, Mark A.</creator><creator>Turn, Scott Q.</creator><creator>Cui, Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100115</creationdate><title>Kinetic modeling of high pressure autothermal reforming</title><author>Reese, Mark A. ; Turn, Scott Q. ; Cui, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Autothermal reforming</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>High pressure</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Kinetic modeling</topic><topic>Methane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reese, Mark A.</creatorcontrib><creatorcontrib>Turn, Scott Q.</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reese, Mark A.</au><au>Turn, Scott Q.</au><au>Cui, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic modeling of high pressure autothermal reforming</atitle><jtitle>Journal of power sources</jtitle><date>2010-01-15</date><risdate>2010</risdate><volume>195</volume><issue>2</issue><spage>553</spage><epage>558</epage><pages>553-558</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O 2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50 bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50 bar have higher S/C ratios and produce higher H 2(out)/O 2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O 2/C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.07.031</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-01, Vol.195 (2), p.553-558
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_34873108
source ScienceDirect Journals (5 years ago - present)
subjects Alternative fuels. Production and utilization
Applied sciences
Autothermal reforming
Energy
Exact sciences and technology
Fuels
High pressure
Hydrogen
Hydrogen production
Kinetic modeling
Methane
title Kinetic modeling of high pressure autothermal reforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20modeling%20of%20high%20pressure%20autothermal%20reforming&rft.jtitle=Journal%20of%20power%20sources&rft.au=Reese,%20Mark%20A.&rft.date=2010-01-15&rft.volume=195&rft.issue=2&rft.spage=553&rft.epage=558&rft.pages=553-558&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.07.031&rft_dat=%3Cproquest_cross%3E21063863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21063863&rft_id=info:pmid/&rft_els_id=S0378775309012117&rfr_iscdi=true