Kinetic modeling of high pressure autothermal reforming
Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). In this companion paper a 1-D, heterogeneou...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010-01, Vol.195 (2), p.553-558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 2 |
container_start_page | 553 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Reese, Mark A. Turn, Scott Q. Cui, Hong |
description | Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50
bar was constructed and tested. The objective of the experimental program was to maximize H
2 production per mole of O
2 supplied (H
2(out)/O
2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O
2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50
bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50
bar have higher S/C ratios and produce higher H
2(out)/O
2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O
2/C. |
doi_str_mv | 10.1016/j.jpowsour.2009.07.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34873108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309012117</els_id><sourcerecordid>21063863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwF1AW2BKe7cR2NxDiS1RigdlynJfWVRIHOwHx70nVwtrpLee-q3sIuaSQUaDiZpNtev8d_RgyBrDIQGbA6RGZUSV5ymRRHJMZcKlSKQt-Ss5i3AAApRJmRL66Dgdnk9ZX2Lhulfg6WbvVOukDxjgGTMw4-GGNoTVNErD2oZ2wc3JSmybixf7Oycfjw_v9c7p8e3q5v1umNod8SKksq1xVSFlhUIpcWAZKcQBmTZkzKbDkhhmTK1XQ0gKgBCyEgsKwCgvkc3K9-9sH_zliHHTrosWmMR36MWqeTyMpqIMgoyC4EnwCxQ60wcc4DdJ9cK0JP5qC3grVG_0nVG-FapB6EjoFr_YNJlrT1MF01sX_NGNA1WKx5W53HE5evhwGHa3DzmLlAtpBV94dqvoFQ9-PRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21063863</pqid></control><display><type>article</type><title>Kinetic modeling of high pressure autothermal reforming</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Reese, Mark A. ; Turn, Scott Q. ; Cui, Hong</creator><creatorcontrib>Reese, Mark A. ; Turn, Scott Q. ; Cui, Hong</creatorcontrib><description>Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50
bar was constructed and tested. The objective of the experimental program was to maximize H
2 production per mole of O
2 supplied (H
2(out)/O
2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O
2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50
bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50
bar have higher S/C ratios and produce higher H
2(out)/O
2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O
2/C.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.07.031</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Autothermal reforming ; Energy ; Exact sciences and technology ; Fuels ; High pressure ; Hydrogen ; Hydrogen production ; Kinetic modeling ; Methane</subject><ispartof>Journal of power sources, 2010-01, Vol.195 (2), p.553-558</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</citedby><cites>FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2009.07.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22018991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reese, Mark A.</creatorcontrib><creatorcontrib>Turn, Scott Q.</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><title>Kinetic modeling of high pressure autothermal reforming</title><title>Journal of power sources</title><description>Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50
bar was constructed and tested. The objective of the experimental program was to maximize H
2 production per mole of O
2 supplied (H
2(out)/O
2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O
2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50
bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50
bar have higher S/C ratios and produce higher H
2(out)/O
2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O
2/C.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Autothermal reforming</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>High pressure</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Kinetic modeling</subject><subject>Methane</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwF1AW2BKe7cR2NxDiS1RigdlynJfWVRIHOwHx70nVwtrpLee-q3sIuaSQUaDiZpNtev8d_RgyBrDIQGbA6RGZUSV5ymRRHJMZcKlSKQt-Ss5i3AAApRJmRL66Dgdnk9ZX2Lhulfg6WbvVOukDxjgGTMw4-GGNoTVNErD2oZ2wc3JSmybixf7Oycfjw_v9c7p8e3q5v1umNod8SKksq1xVSFlhUIpcWAZKcQBmTZkzKbDkhhmTK1XQ0gKgBCyEgsKwCgvkc3K9-9sH_zliHHTrosWmMR36MWqeTyMpqIMgoyC4EnwCxQ60wcc4DdJ9cK0JP5qC3grVG_0nVG-FapB6EjoFr_YNJlrT1MF01sX_NGNA1WKx5W53HE5evhwGHa3DzmLlAtpBV94dqvoFQ9-PRg</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Reese, Mark A.</creator><creator>Turn, Scott Q.</creator><creator>Cui, Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100115</creationdate><title>Kinetic modeling of high pressure autothermal reforming</title><author>Reese, Mark A. ; Turn, Scott Q. ; Cui, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-17bd48de125ae7646c20883002cab4276eb3a2aa48851bc00e70e56805a2de5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Autothermal reforming</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>High pressure</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Kinetic modeling</topic><topic>Methane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reese, Mark A.</creatorcontrib><creatorcontrib>Turn, Scott Q.</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reese, Mark A.</au><au>Turn, Scott Q.</au><au>Cui, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic modeling of high pressure autothermal reforming</atitle><jtitle>Journal of power sources</jtitle><date>2010-01-15</date><risdate>2010</risdate><volume>195</volume><issue>2</issue><spage>553</spage><epage>558</epage><pages>553-558</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Previously a lab scale catalytic autothermal reformer (ATR) capable of operating at pressures from 6 to 50
bar was constructed and tested. The objective of the experimental program was to maximize H
2 production per mole of O
2 supplied (H
2(out)/O
2(in)). In this companion paper a 1-D, heterogeneous, numerical model is developed and tested for simulating the high pressure ATR. The effects of molar steam to carbon (S/C) and oxygen to carbon (O
2/C) ratios are studied and optimal operating conditions are identified for three system operating pressures; 6, 28 and 50
bar. Experimental optimal conditions and model results are compared and found to be in close agreement. The optimal conditions, however, predicted by the model at pressures of 28 and 50
bar have higher S/C ratios and produce higher H
2(out)/O
2(in) yields than the experimentally determined optimums. A sensitivity analysis consisting of 9 model parameters is also performed. The model is most sensitive to the activation energy of the two steam reforming reactions used in the model and the operating parameter O
2/C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.07.031</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-01, Vol.195 (2), p.553-558 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_34873108 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alternative fuels. Production and utilization Applied sciences Autothermal reforming Energy Exact sciences and technology Fuels High pressure Hydrogen Hydrogen production Kinetic modeling Methane |
title | Kinetic modeling of high pressure autothermal reforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20modeling%20of%20high%20pressure%20autothermal%20reforming&rft.jtitle=Journal%20of%20power%20sources&rft.au=Reese,%20Mark%20A.&rft.date=2010-01-15&rft.volume=195&rft.issue=2&rft.spage=553&rft.epage=558&rft.pages=553-558&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.07.031&rft_dat=%3Cproquest_cross%3E21063863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21063863&rft_id=info:pmid/&rft_els_id=S0378775309012117&rfr_iscdi=true |