Design of novel high strength bainitic steels: Part 1
Mixed microstructures consisting of fine plates of upper bainitic ferrite separated by thin films of stable retained austenite have seen many applications in recent years. There may also be some martensite present, although carbides are avoided by the judicious use of silicon as an alloying element....
Gespeichert in:
Veröffentlicht in: | Materials science and technology 2001-05, Vol.17 (5), p.512-516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | 5 |
container_start_page | 512 |
container_title | Materials science and technology |
container_volume | 17 |
creator | Caballero, F.G. Bhadeshia, H.K.D.H. Mawella, K.J.A. Jones, D.G. Brown, P. |
description | Mixed microstructures consisting of fine plates of upper bainitic ferrite separated by thin films of stable retained austenite have seen many applications in recent years. There may also be some martensite present, although carbides are avoided by the judicious use of silicon as an alloying element. The essential principles governing the optimisation of such microstructures are well established, particularly that large regions of unstable high carbon retained austenite must be avoided. With careful design, impressive combinations of strength and toughness have been reported for high silicon bainitic steels. The aim of the present work was to ascertain how far these concepts could be extended to achieve unprecedented combinations of strength and toughness in bulk samples subjected to continuous cooling transformation, consistent with certain hardenability and processing requirements. Thus, this paper (part 1 of a two part study) deals with the design, using phase transformation theory, of a series of bainitic alloys, given a set of industrial constraints. Part 2 of the study concerns the experimental verification of the design process. |
doi_str_mv | 10.1179/026708301101510348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_miscellaneous_34861318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_026708301101510348</sage_id><sourcerecordid>351090691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-734473d10ea522ffc656644ee1f229d7b94fb6433a01ab2aeef3692f191a32433</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKci4ltdbpImjeCDzL8w0Ad9LmmXdBldM5NO2bc3oxNFYU8XDr9z7r0HoVPAlwBCjjDhAucUA2DIAFOW76EBCEZTkjOxjwYbII0EP0RHIcwxxlxKOUDZrQ62bhNnktZ96CaZ2XqWhM7rtu5mSalsaztbRUXrJlwlL8p3CRyjA6OaoE-2c4je7u9ex4_p5PnhaXwzSSsmcJcKypigU8BaZYQYU_GMc8a0BkOInIpSMlNyRqnCoEqitDaUS2JAgqIk6kN00ecuvXtf6dAVCxsq3TSq1W4VivgnBwp5BM_-gHO38m28rSCxlEwCkAiRHqq8C8FrUyy9XSi_LgAXmxqL_zVG0_k2WYVKNcartrLhlxNnec4jNuqxoGr9s3xn8HXvsK1xfqE-nW-mRafWjfPfW-gO_xdpXo7d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201159112</pqid></control><display><type>article</type><title>Design of novel high strength bainitic steels: Part 1</title><source>SAGE Complete A-Z List</source><creator>Caballero, F.G. ; Bhadeshia, H.K.D.H. ; Mawella, K.J.A. ; Jones, D.G. ; Brown, P.</creator><creatorcontrib>Caballero, F.G. ; Bhadeshia, H.K.D.H. ; Mawella, K.J.A. ; Jones, D.G. ; Brown, P.</creatorcontrib><description>Mixed microstructures consisting of fine plates of upper bainitic ferrite separated by thin films of stable retained austenite have seen many applications in recent years. There may also be some martensite present, although carbides are avoided by the judicious use of silicon as an alloying element. The essential principles governing the optimisation of such microstructures are well established, particularly that large regions of unstable high carbon retained austenite must be avoided. With careful design, impressive combinations of strength and toughness have been reported for high silicon bainitic steels. The aim of the present work was to ascertain how far these concepts could be extended to achieve unprecedented combinations of strength and toughness in bulk samples subjected to continuous cooling transformation, consistent with certain hardenability and processing requirements. Thus, this paper (part 1 of a two part study) deals with the design, using phase transformation theory, of a series of bainitic alloys, given a set of industrial constraints. Part 2 of the study concerns the experimental verification of the design process.</description><identifier>ISSN: 0267-0836</identifier><identifier>EISSN: 1743-2847</identifier><identifier>DOI: 10.1179/026708301101510348</identifier><identifier>CODEN: MSCTEP</identifier><language>eng</language><publisher>London, England: Taylor & Francis</publisher><subject>Applied sciences ; Elasticity. Plasticity ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy</subject><ispartof>Materials science and technology, 2001-05, Vol.17 (5), p.512-516</ispartof><rights>2001 IOM Communications for the Institute of Materials 2001</rights><rights>2001 IOM Communications for the Institute of Materials</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Institute of Materials May 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-734473d10ea522ffc656644ee1f229d7b94fb6433a01ab2aeef3692f191a32433</citedby><cites>FETCH-LOGICAL-c470t-734473d10ea522ffc656644ee1f229d7b94fb6433a01ab2aeef3692f191a32433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/026708301101510348$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/026708301101510348$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1005886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caballero, F.G.</creatorcontrib><creatorcontrib>Bhadeshia, H.K.D.H.</creatorcontrib><creatorcontrib>Mawella, K.J.A.</creatorcontrib><creatorcontrib>Jones, D.G.</creatorcontrib><creatorcontrib>Brown, P.</creatorcontrib><title>Design of novel high strength bainitic steels: Part 1</title><title>Materials science and technology</title><description>Mixed microstructures consisting of fine plates of upper bainitic ferrite separated by thin films of stable retained austenite have seen many applications in recent years. There may also be some martensite present, although carbides are avoided by the judicious use of silicon as an alloying element. The essential principles governing the optimisation of such microstructures are well established, particularly that large regions of unstable high carbon retained austenite must be avoided. With careful design, impressive combinations of strength and toughness have been reported for high silicon bainitic steels. The aim of the present work was to ascertain how far these concepts could be extended to achieve unprecedented combinations of strength and toughness in bulk samples subjected to continuous cooling transformation, consistent with certain hardenability and processing requirements. Thus, this paper (part 1 of a two part study) deals with the design, using phase transformation theory, of a series of bainitic alloys, given a set of industrial constraints. Part 2 of the study concerns the experimental verification of the design process.</description><subject>Applied sciences</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><issn>0267-0836</issn><issn>1743-2847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF9LwzAUxYMoOKdfwKci4ltdbpImjeCDzL8w0Ad9LmmXdBldM5NO2bc3oxNFYU8XDr9z7r0HoVPAlwBCjjDhAucUA2DIAFOW76EBCEZTkjOxjwYbII0EP0RHIcwxxlxKOUDZrQ62bhNnktZ96CaZ2XqWhM7rtu5mSalsaztbRUXrJlwlL8p3CRyjA6OaoE-2c4je7u9ex4_p5PnhaXwzSSsmcJcKypigU8BaZYQYU_GMc8a0BkOInIpSMlNyRqnCoEqitDaUS2JAgqIk6kN00ecuvXtf6dAVCxsq3TSq1W4VivgnBwp5BM_-gHO38m28rSCxlEwCkAiRHqq8C8FrUyy9XSi_LgAXmxqL_zVG0_k2WYVKNcartrLhlxNnec4jNuqxoGr9s3xn8HXvsK1xfqE-nW-mRafWjfPfW-gO_xdpXo7d</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Caballero, F.G.</creator><creator>Bhadeshia, H.K.D.H.</creator><creator>Mawella, K.J.A.</creator><creator>Jones, D.G.</creator><creator>Brown, P.</creator><general>Taylor & Francis</general><general>SAGE Publications</general><general>Maney</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20010501</creationdate><title>Design of novel high strength bainitic steels: Part 1</title><author>Caballero, F.G. ; Bhadeshia, H.K.D.H. ; Mawella, K.J.A. ; Jones, D.G. ; Brown, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-734473d10ea522ffc656644ee1f229d7b94fb6433a01ab2aeef3692f191a32433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero, F.G.</creatorcontrib><creatorcontrib>Bhadeshia, H.K.D.H.</creatorcontrib><creatorcontrib>Mawella, K.J.A.</creatorcontrib><creatorcontrib>Jones, D.G.</creatorcontrib><creatorcontrib>Brown, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Materials science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caballero, F.G.</au><au>Bhadeshia, H.K.D.H.</au><au>Mawella, K.J.A.</au><au>Jones, D.G.</au><au>Brown, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of novel high strength bainitic steels: Part 1</atitle><jtitle>Materials science and technology</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>17</volume><issue>5</issue><spage>512</spage><epage>516</epage><pages>512-516</pages><issn>0267-0836</issn><eissn>1743-2847</eissn><coden>MSCTEP</coden><abstract>Mixed microstructures consisting of fine plates of upper bainitic ferrite separated by thin films of stable retained austenite have seen many applications in recent years. There may also be some martensite present, although carbides are avoided by the judicious use of silicon as an alloying element. The essential principles governing the optimisation of such microstructures are well established, particularly that large regions of unstable high carbon retained austenite must be avoided. With careful design, impressive combinations of strength and toughness have been reported for high silicon bainitic steels. The aim of the present work was to ascertain how far these concepts could be extended to achieve unprecedented combinations of strength and toughness in bulk samples subjected to continuous cooling transformation, consistent with certain hardenability and processing requirements. Thus, this paper (part 1 of a two part study) deals with the design, using phase transformation theory, of a series of bainitic alloys, given a set of industrial constraints. Part 2 of the study concerns the experimental verification of the design process.</abstract><cop>London, England</cop><pub>Taylor & Francis</pub><doi>10.1179/026708301101510348</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-0836 |
ispartof | Materials science and technology, 2001-05, Vol.17 (5), p.512-516 |
issn | 0267-0836 1743-2847 |
language | eng |
recordid | cdi_proquest_miscellaneous_34861318 |
source | SAGE Complete A-Z List |
subjects | Applied sciences Elasticity. Plasticity Exact sciences and technology Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy |
title | Design of novel high strength bainitic steels: Part 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20novel%20high%20strength%20bainitic%20steels:%20Part%201&rft.jtitle=Materials%20science%20and%20technology&rft.au=Caballero,%20F.G.&rft.date=2001-05-01&rft.volume=17&rft.issue=5&rft.spage=512&rft.epage=516&rft.pages=512-516&rft.issn=0267-0836&rft.eissn=1743-2847&rft.coden=MSCTEP&rft_id=info:doi/10.1179/026708301101510348&rft_dat=%3Cproquest_sage_%3E351090691%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201159112&rft_id=info:pmid/&rft_sage_id=10.1179_026708301101510348&rfr_iscdi=true |