Three-dimensional gravity–capillary waves on water — Small surface tension case

This paper considers three-dimensional gravity–capillary waves on water of finite-depth, which are uniformly translating in a horizontal propagating direction and periodic in a transverse direction. The exact Euler equations are formulated as a spatial dynamic system in which the variable used for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2009-08, Vol.238 (17), p.1735-1751
Hauptverfasser: Deng, Shengfu, Sun, Shu-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1751
container_issue 17
container_start_page 1735
container_title Physica. D
container_volume 238
creator Deng, Shengfu
Sun, Shu-Ming
description This paper considers three-dimensional gravity–capillary waves on water of finite-depth, which are uniformly translating in a horizontal propagating direction and periodic in a transverse direction. The exact Euler equations are formulated as a spatial dynamic system in which the variable used for the propagating direction is a time-like variable. The existence of the solutions of the system is determined by two non-dimensional constants, the Bond number b and the Froude number F , which in turn give the number of eigenvalues on the imaginary axis of the complex plane for the corresponding linearized operator around a uniform flow. Assume that λ = F − 2 , C 1 is the curve in the ( b , λ ) -plane on which the first two eigenvalues for three-dimensional waves collide at the imaginary axis, and the intersection point of C 1 with { λ = 1 } is b 1 > 0 . In this paper, the case for 0 < b < b 1 and ( b , λ ) near C 1 is considered. A center-manifold reduction technique and a normal form analysis are applied to show that the dynamical system can be reduced to a system of ordinary differential equations. Using the existence of a homoclinic orbit connecting to a two-dimensional periodic (called generalized solitary-wave, thereafter) solution for the reduced system, it is shown that such a generalized solitary-wave solution persists for the original system by applying a perturbation method and adjusting some appropriate constants.
doi_str_mv 10.1016/j.physd.2009.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34831832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278909001705</els_id><sourcerecordid>34831832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-101a72d4f19aec69a3111ee765fe1b37867079bea3eb43094b61c8fbbd9cae323</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJELgC2jcQGezD8e7LihQxEuKRJFQr8brMdnIscOuE5Qu_wBfmC9h8xAl1Uxx7p25l5BrRhNGWXY3SxbTtS8TTmme0EFCGT8hPaYkjxXl_JT0AiVjLlV-Ti68n1FKmRSyR8aTqUOMSzvHxtu2gTr6cLCy3Xq7-TawsHUNbh19wQp91DZh6dBF281PNJ5DXUd-6SowGHUHeWTA4yU5q6D2eHWcffL-9DgZvsSjt-fX4cMoNiJLuzh8DpKXacVyQJPlIBhjiDIbVMgKIVUmqcwLBIFFKmieFhkzqiqKMjeAgos-uT34Llz7uUTf6bn1BsPHDbZLr0WqBFN7UBxA41rvHVZ64ew85NKM6l2Beqb3BepdgZoOdCgwqG6O9uAN1JWDxlj_J-VM8TRXKnD3Bw5D1pVFp72x2BgsrUPT6bK1_975BWheiow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34831832</pqid></control><display><type>article</type><title>Three-dimensional gravity–capillary waves on water — Small surface tension case</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deng, Shengfu ; Sun, Shu-Ming</creator><creatorcontrib>Deng, Shengfu ; Sun, Shu-Ming</creatorcontrib><description>This paper considers three-dimensional gravity–capillary waves on water of finite-depth, which are uniformly translating in a horizontal propagating direction and periodic in a transverse direction. The exact Euler equations are formulated as a spatial dynamic system in which the variable used for the propagating direction is a time-like variable. The existence of the solutions of the system is determined by two non-dimensional constants, the Bond number b and the Froude number F , which in turn give the number of eigenvalues on the imaginary axis of the complex plane for the corresponding linearized operator around a uniform flow. Assume that λ = F − 2 , C 1 is the curve in the ( b , λ ) -plane on which the first two eigenvalues for three-dimensional waves collide at the imaginary axis, and the intersection point of C 1 with { λ = 1 } is b 1 &gt; 0 . In this paper, the case for 0 &lt; b &lt; b 1 and ( b , λ ) near C 1 is considered. A center-manifold reduction technique and a normal form analysis are applied to show that the dynamical system can be reduced to a system of ordinary differential equations. Using the existence of a homoclinic orbit connecting to a two-dimensional periodic (called generalized solitary-wave, thereafter) solution for the reduced system, it is shown that such a generalized solitary-wave solution persists for the original system by applying a perturbation method and adjusting some appropriate constants.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2009.05.012</identifier><identifier>CODEN: PDNPDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Homoclinic orbits ; Normal form ; Periodic orbits ; Physics ; Three-dimensional solitary waves</subject><ispartof>Physica. D, 2009-08, Vol.238 (17), p.1735-1751</ispartof><rights>2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-101a72d4f19aec69a3111ee765fe1b37867079bea3eb43094b61c8fbbd9cae323</citedby><cites>FETCH-LOGICAL-c364t-101a72d4f19aec69a3111ee765fe1b37867079bea3eb43094b61c8fbbd9cae323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physd.2009.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21824988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Shengfu</creatorcontrib><creatorcontrib>Sun, Shu-Ming</creatorcontrib><title>Three-dimensional gravity–capillary waves on water — Small surface tension case</title><title>Physica. D</title><description>This paper considers three-dimensional gravity–capillary waves on water of finite-depth, which are uniformly translating in a horizontal propagating direction and periodic in a transverse direction. The exact Euler equations are formulated as a spatial dynamic system in which the variable used for the propagating direction is a time-like variable. The existence of the solutions of the system is determined by two non-dimensional constants, the Bond number b and the Froude number F , which in turn give the number of eigenvalues on the imaginary axis of the complex plane for the corresponding linearized operator around a uniform flow. Assume that λ = F − 2 , C 1 is the curve in the ( b , λ ) -plane on which the first two eigenvalues for three-dimensional waves collide at the imaginary axis, and the intersection point of C 1 with { λ = 1 } is b 1 &gt; 0 . In this paper, the case for 0 &lt; b &lt; b 1 and ( b , λ ) near C 1 is considered. A center-manifold reduction technique and a normal form analysis are applied to show that the dynamical system can be reduced to a system of ordinary differential equations. Using the existence of a homoclinic orbit connecting to a two-dimensional periodic (called generalized solitary-wave, thereafter) solution for the reduced system, it is shown that such a generalized solitary-wave solution persists for the original system by applying a perturbation method and adjusting some appropriate constants.</description><subject>Exact sciences and technology</subject><subject>Homoclinic orbits</subject><subject>Normal form</subject><subject>Periodic orbits</subject><subject>Physics</subject><subject>Three-dimensional solitary waves</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOw0AQRVcIJELgC2jcQGezD8e7LihQxEuKRJFQr8brMdnIscOuE5Qu_wBfmC9h8xAl1Uxx7p25l5BrRhNGWXY3SxbTtS8TTmme0EFCGT8hPaYkjxXl_JT0AiVjLlV-Ti68n1FKmRSyR8aTqUOMSzvHxtu2gTr6cLCy3Xq7-TawsHUNbh19wQp91DZh6dBF281PNJ5DXUd-6SowGHUHeWTA4yU5q6D2eHWcffL-9DgZvsSjt-fX4cMoNiJLuzh8DpKXacVyQJPlIBhjiDIbVMgKIVUmqcwLBIFFKmieFhkzqiqKMjeAgos-uT34Llz7uUTf6bn1BsPHDbZLr0WqBFN7UBxA41rvHVZ64ew85NKM6l2Beqb3BepdgZoOdCgwqG6O9uAN1JWDxlj_J-VM8TRXKnD3Bw5D1pVFp72x2BgsrUPT6bK1_975BWheiow</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>Deng, Shengfu</creator><creator>Sun, Shu-Ming</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090815</creationdate><title>Three-dimensional gravity–capillary waves on water — Small surface tension case</title><author>Deng, Shengfu ; Sun, Shu-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-101a72d4f19aec69a3111ee765fe1b37867079bea3eb43094b61c8fbbd9cae323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Homoclinic orbits</topic><topic>Normal form</topic><topic>Periodic orbits</topic><topic>Physics</topic><topic>Three-dimensional solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shengfu</creatorcontrib><creatorcontrib>Sun, Shu-Ming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shengfu</au><au>Sun, Shu-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional gravity–capillary waves on water — Small surface tension case</atitle><jtitle>Physica. D</jtitle><date>2009-08-15</date><risdate>2009</risdate><volume>238</volume><issue>17</issue><spage>1735</spage><epage>1751</epage><pages>1735-1751</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><coden>PDNPDT</coden><abstract>This paper considers three-dimensional gravity–capillary waves on water of finite-depth, which are uniformly translating in a horizontal propagating direction and periodic in a transverse direction. The exact Euler equations are formulated as a spatial dynamic system in which the variable used for the propagating direction is a time-like variable. The existence of the solutions of the system is determined by two non-dimensional constants, the Bond number b and the Froude number F , which in turn give the number of eigenvalues on the imaginary axis of the complex plane for the corresponding linearized operator around a uniform flow. Assume that λ = F − 2 , C 1 is the curve in the ( b , λ ) -plane on which the first two eigenvalues for three-dimensional waves collide at the imaginary axis, and the intersection point of C 1 with { λ = 1 } is b 1 &gt; 0 . In this paper, the case for 0 &lt; b &lt; b 1 and ( b , λ ) near C 1 is considered. A center-manifold reduction technique and a normal form analysis are applied to show that the dynamical system can be reduced to a system of ordinary differential equations. Using the existence of a homoclinic orbit connecting to a two-dimensional periodic (called generalized solitary-wave, thereafter) solution for the reduced system, it is shown that such a generalized solitary-wave solution persists for the original system by applying a perturbation method and adjusting some appropriate constants.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2009.05.012</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2009-08, Vol.238 (17), p.1735-1751
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_34831832
source Elsevier ScienceDirect Journals Complete
subjects Exact sciences and technology
Homoclinic orbits
Normal form
Periodic orbits
Physics
Three-dimensional solitary waves
title Three-dimensional gravity–capillary waves on water — Small surface tension case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20gravity%E2%80%93capillary%20waves%20on%20water%20%E2%80%94%20Small%20surface%20tension%20case&rft.jtitle=Physica.%20D&rft.au=Deng,%20Shengfu&rft.date=2009-08-15&rft.volume=238&rft.issue=17&rft.spage=1735&rft.epage=1751&rft.pages=1735-1751&rft.issn=0167-2789&rft.eissn=1872-8022&rft.coden=PDNPDT&rft_id=info:doi/10.1016/j.physd.2009.05.012&rft_dat=%3Cproquest_cross%3E34831832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34831832&rft_id=info:pmid/&rft_els_id=S0167278909001705&rfr_iscdi=true