The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot–metallic nanoparticle systems

We study the inhibition of optical excitation and enhancement of Rabi flopping and frequency in semiconductor quantum dots via plasmonic effects. This is done by demonstrating that the interaction of a quantum dot with a laser field in the vicinity of a metallic nanoparticle can be described in term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2009-06, Vol.20 (22), p.225401-225401p6
1. Verfasser: Sadeghi, S M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the inhibition of optical excitation and enhancement of Rabi flopping and frequency in semiconductor quantum dots via plasmonic effects. This is done by demonstrating that the interaction of a quantum dot with a laser field in the vicinity of a metallic nanoparticle can be described in terms of optical Bloch equations with a plasmically normalized Rabi frequency. We show that in the weak-field regime plasmonic effects can suppress the interband transitions, inhibiting exciton generation. In the strong-field regime these effects delay the response of the quantum dot to the laser field and enhance Rabi flopping. We relate these to the conversion of Rabi frequency from a real quantity into a complex and strongly frequency-dependent quantity as plasmonic effects become significant. We show that, within the strong-field regime, in the wavelength range where real and imaginary parts of this frequency reach their maxima, a strongly frequency-dependent enhancement of carrier excitation can happen.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/20/22/225401