Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer

Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering 2009-10, Vol.47 (10), p.1018-1022
Hauptverfasser: Schroeder, Kerstin, Ecke, Wolfgang, Willsch, Reinhardt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 10
container_start_page 1018
container_title Optics and lasers in engineering
container_volume 47
creator Schroeder, Kerstin
Ecke, Wolfgang
Willsch, Reinhardt
description Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.
doi_str_mv 10.1016/j.optlaseng.2009.04.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34801917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816609000864</els_id><sourcerecordid>34801917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxS1EJRbaz1CfuCUdx86_I6DSVkLiAmdrYk-yXmWdYDsgvj1GW_Xa04w0772Z-TH2XUApQDQ_DuWyphkj-amsAPoSVAlQnbGd6FpZgITqnO1AKFl0omku2GWMB8hOJcSObY9rcgZnPrqBAr8NOE18Cpicn_j-3YZlIs9zeFwCH_IWyxfP6RU9RUM-FaOj2XLnEwU0yeXhm0t7vuI8o3Xbkae981k15y6gj3YzFL6yLyPOkb79rVfs-f7n093v4uHx15-7m4fCSNWkolWjGVXfUdUDyn4QQ93UA_YVdVhhDSQlVSNibZG6RhpFlVVGyq5poW1ULa_Y9Sl3DcvLRjHpo8tn59M8LVvUUnUgetFmYXsSmrDEGGjUa3BHDO9agP7ErA_6H2b9iVmD0hlzdt6cnJT_eHUUdDSOvCHrApmk7eL-m_EB-h6NnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34801917</pqid></control><display><type>article</type><title>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</title><source>Elsevier ScienceDirect Journals</source><creator>Schroeder, Kerstin ; Ecke, Wolfgang ; Willsch, Reinhardt</creator><creatorcontrib>Schroeder, Kerstin ; Ecke, Wolfgang ; Willsch, Reinhardt</creatorcontrib><description>Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2009.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evanescent-field interaction ; Fiber Bragg grating sensor ; Hydrogen sensor ; Refractometric sensor ; Surface plasmon wave</subject><ispartof>Optics and lasers in engineering, 2009-10, Vol.47 (10), p.1018-1022</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</citedby><cites>FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlaseng.2009.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Schroeder, Kerstin</creatorcontrib><creatorcontrib>Ecke, Wolfgang</creatorcontrib><creatorcontrib>Willsch, Reinhardt</creatorcontrib><title>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</title><title>Optics and lasers in engineering</title><description>Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.</description><subject>Evanescent-field interaction</subject><subject>Fiber Bragg grating sensor</subject><subject>Hydrogen sensor</subject><subject>Refractometric sensor</subject><subject>Surface plasmon wave</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxS1EJRbaz1CfuCUdx86_I6DSVkLiAmdrYk-yXmWdYDsgvj1GW_Xa04w0772Z-TH2XUApQDQ_DuWyphkj-amsAPoSVAlQnbGd6FpZgITqnO1AKFl0omku2GWMB8hOJcSObY9rcgZnPrqBAr8NOE18Cpicn_j-3YZlIs9zeFwCH_IWyxfP6RU9RUM-FaOj2XLnEwU0yeXhm0t7vuI8o3Xbkae981k15y6gj3YzFL6yLyPOkb79rVfs-f7n093v4uHx15-7m4fCSNWkolWjGVXfUdUDyn4QQ93UA_YVdVhhDSQlVSNibZG6RhpFlVVGyq5poW1ULa_Y9Sl3DcvLRjHpo8tn59M8LVvUUnUgetFmYXsSmrDEGGjUa3BHDO9agP7ErA_6H2b9iVmD0hlzdt6cnJT_eHUUdDSOvCHrApmk7eL-m_EB-h6NnA</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Schroeder, Kerstin</creator><creator>Ecke, Wolfgang</creator><creator>Willsch, Reinhardt</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20091001</creationdate><title>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</title><author>Schroeder, Kerstin ; Ecke, Wolfgang ; Willsch, Reinhardt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Evanescent-field interaction</topic><topic>Fiber Bragg grating sensor</topic><topic>Hydrogen sensor</topic><topic>Refractometric sensor</topic><topic>Surface plasmon wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Kerstin</creatorcontrib><creatorcontrib>Ecke, Wolfgang</creatorcontrib><creatorcontrib>Willsch, Reinhardt</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Kerstin</au><au>Ecke, Wolfgang</au><au>Willsch, Reinhardt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</atitle><jtitle>Optics and lasers in engineering</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>47</volume><issue>10</issue><spage>1018</spage><epage>1022</epage><pages>1018-1022</pages><issn>0143-8166</issn><eissn>1873-0302</eissn><abstract>Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2009.04.002</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-8166
ispartof Optics and lasers in engineering, 2009-10, Vol.47 (10), p.1018-1022
issn 0143-8166
1873-0302
language eng
recordid cdi_proquest_miscellaneous_34801917
source Elsevier ScienceDirect Journals
subjects Evanescent-field interaction
Fiber Bragg grating sensor
Hydrogen sensor
Refractometric sensor
Surface plasmon wave
title Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20fiber%20Bragg%20grating%20hydrogen%20sensor%20based%20on%20evanescent-field%20interaction%20with%20palladium%20thin-film%20transducer&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Schroeder,%20Kerstin&rft.date=2009-10-01&rft.volume=47&rft.issue=10&rft.spage=1018&rft.epage=1022&rft.pages=1018-1022&rft.issn=0143-8166&rft.eissn=1873-0302&rft_id=info:doi/10.1016/j.optlaseng.2009.04.002&rft_dat=%3Cproquest_cross%3E34801917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34801917&rft_id=info:pmid/&rft_els_id=S0143816609000864&rfr_iscdi=true