Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer
Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing...
Gespeichert in:
Veröffentlicht in: | Optics and lasers in engineering 2009-10, Vol.47 (10), p.1018-1022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 |
---|---|
container_issue | 10 |
container_start_page | 1018 |
container_title | Optics and lasers in engineering |
container_volume | 47 |
creator | Schroeder, Kerstin Ecke, Wolfgang Willsch, Reinhardt |
description | Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen. |
doi_str_mv | 10.1016/j.optlaseng.2009.04.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34801917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816609000864</els_id><sourcerecordid>34801917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxS1EJRbaz1CfuCUdx86_I6DSVkLiAmdrYk-yXmWdYDsgvj1GW_Xa04w0772Z-TH2XUApQDQ_DuWyphkj-amsAPoSVAlQnbGd6FpZgITqnO1AKFl0omku2GWMB8hOJcSObY9rcgZnPrqBAr8NOE18Cpicn_j-3YZlIs9zeFwCH_IWyxfP6RU9RUM-FaOj2XLnEwU0yeXhm0t7vuI8o3Xbkae981k15y6gj3YzFL6yLyPOkb79rVfs-f7n093v4uHx15-7m4fCSNWkolWjGVXfUdUDyn4QQ93UA_YVdVhhDSQlVSNibZG6RhpFlVVGyq5poW1ULa_Y9Sl3DcvLRjHpo8tn59M8LVvUUnUgetFmYXsSmrDEGGjUa3BHDO9agP7ErA_6H2b9iVmD0hlzdt6cnJT_eHUUdDSOvCHrApmk7eL-m_EB-h6NnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34801917</pqid></control><display><type>article</type><title>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</title><source>Elsevier ScienceDirect Journals</source><creator>Schroeder, Kerstin ; Ecke, Wolfgang ; Willsch, Reinhardt</creator><creatorcontrib>Schroeder, Kerstin ; Ecke, Wolfgang ; Willsch, Reinhardt</creatorcontrib><description>Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2009.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evanescent-field interaction ; Fiber Bragg grating sensor ; Hydrogen sensor ; Refractometric sensor ; Surface plasmon wave</subject><ispartof>Optics and lasers in engineering, 2009-10, Vol.47 (10), p.1018-1022</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</citedby><cites>FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlaseng.2009.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Schroeder, Kerstin</creatorcontrib><creatorcontrib>Ecke, Wolfgang</creatorcontrib><creatorcontrib>Willsch, Reinhardt</creatorcontrib><title>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</title><title>Optics and lasers in engineering</title><description>Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.</description><subject>Evanescent-field interaction</subject><subject>Fiber Bragg grating sensor</subject><subject>Hydrogen sensor</subject><subject>Refractometric sensor</subject><subject>Surface plasmon wave</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxS1EJRbaz1CfuCUdx86_I6DSVkLiAmdrYk-yXmWdYDsgvj1GW_Xa04w0772Z-TH2XUApQDQ_DuWyphkj-amsAPoSVAlQnbGd6FpZgITqnO1AKFl0omku2GWMB8hOJcSObY9rcgZnPrqBAr8NOE18Cpicn_j-3YZlIs9zeFwCH_IWyxfP6RU9RUM-FaOj2XLnEwU0yeXhm0t7vuI8o3Xbkae981k15y6gj3YzFL6yLyPOkb79rVfs-f7n093v4uHx15-7m4fCSNWkolWjGVXfUdUDyn4QQ93UA_YVdVhhDSQlVSNibZG6RhpFlVVGyq5poW1ULa_Y9Sl3DcvLRjHpo8tn59M8LVvUUnUgetFmYXsSmrDEGGjUa3BHDO9agP7ErA_6H2b9iVmD0hlzdt6cnJT_eHUUdDSOvCHrApmk7eL-m_EB-h6NnA</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Schroeder, Kerstin</creator><creator>Ecke, Wolfgang</creator><creator>Willsch, Reinhardt</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20091001</creationdate><title>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</title><author>Schroeder, Kerstin ; Ecke, Wolfgang ; Willsch, Reinhardt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-74fcf498e290a39b1b565ba92e8a2a50e33e2faa5dae863c4e2d4c33867076453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Evanescent-field interaction</topic><topic>Fiber Bragg grating sensor</topic><topic>Hydrogen sensor</topic><topic>Refractometric sensor</topic><topic>Surface plasmon wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Kerstin</creatorcontrib><creatorcontrib>Ecke, Wolfgang</creatorcontrib><creatorcontrib>Willsch, Reinhardt</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Kerstin</au><au>Ecke, Wolfgang</au><au>Willsch, Reinhardt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer</atitle><jtitle>Optics and lasers in engineering</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>47</volume><issue>10</issue><spage>1018</spage><epage>1022</epage><pages>1018-1022</pages><issn>0143-8166</issn><eissn>1873-0302</eissn><abstract>Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refractometry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2009.04.002</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-8166 |
ispartof | Optics and lasers in engineering, 2009-10, Vol.47 (10), p.1018-1022 |
issn | 0143-8166 1873-0302 |
language | eng |
recordid | cdi_proquest_miscellaneous_34801917 |
source | Elsevier ScienceDirect Journals |
subjects | Evanescent-field interaction Fiber Bragg grating sensor Hydrogen sensor Refractometric sensor Surface plasmon wave |
title | Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20fiber%20Bragg%20grating%20hydrogen%20sensor%20based%20on%20evanescent-field%20interaction%20with%20palladium%20thin-film%20transducer&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Schroeder,%20Kerstin&rft.date=2009-10-01&rft.volume=47&rft.issue=10&rft.spage=1018&rft.epage=1022&rft.pages=1018-1022&rft.issn=0143-8166&rft.eissn=1873-0302&rft_id=info:doi/10.1016/j.optlaseng.2009.04.002&rft_dat=%3Cproquest_cross%3E34801917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34801917&rft_id=info:pmid/&rft_els_id=S0143816609000864&rfr_iscdi=true |