Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams

Large amplitude free vibration analysis of uniform, slender and isotropic beams is investigated through a relatively simple finite element formulation, applicable to homogenous cubic nonlinear temporal equation (homogenous Duffing equation). All possible boundary conditions where the von-Karman type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design 2009-08, Vol.45 (10), p.624-631
Hauptverfasser: Gupta, R.K., Jagadish Babu, Gunda, Ranga Janardhan, G., Venkateswara Rao, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 10
container_start_page 624
container_title Finite elements in analysis and design
container_volume 45
creator Gupta, R.K.
Jagadish Babu, Gunda
Ranga Janardhan, G.
Venkateswara Rao, G.
description Large amplitude free vibration analysis of uniform, slender and isotropic beams is investigated through a relatively simple finite element formulation, applicable to homogenous cubic nonlinear temporal equation (homogenous Duffing equation). All possible boundary conditions where the von-Karman type nonlinearity is applicable, where the ends are axially immovable are considered. The finite element formulation begins with the assumption of the simple harmonic motion and is subsequently corrected using the harmonic balance method and is general for the type of the nonlinearity mentioned earlier. The nonlinear stiffness matrix derived in the present finite element formulation leads to symmetric stiffness matrix as compared to other recent formulations. Empirical formulas for the nonlinear to linear radian frequency ratios, for the boundary conditions considered, are presented using the least square fit from the solutions of the same obtained for various central amplitude ratios. Numerical results using the empirical formulas compare very well with the results available from the literature for the classical boundary conditions such as the hinged–hinged, clamped–clamped and clamped–hinged beams. For the beams with nonclassical boundary conditions such as the hinged–guided and clamped–guided, the numerical results obtained, apparently for the first time and are in line with the physics of the problem.
doi_str_mv 10.1016/j.finel.2009.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34799173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X09000523</els_id><sourcerecordid>34799173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e26a7bd095474ecdfee07999505f82f4690e1cbe732d0d69f077e16f5b5fecbc3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI4-gZtsdNd606ZNu3Ah4h8MCKLgLqTpjWZI2zFpB-btTR1x6SpZnO-EHELOGaQMWHm1To3t0aUZQJ0CTwHYAVmwSmRJWWfFIVlEqkoqwd-PyUkIawAospIvCL6gU6PdotvRYLuNQxpVdkSKDjvsR2oG300zM_TznY6fSJ3yH0hVxO04tXHiEenWNv4HC3QwdOrtvKQNqi6ckiOjXMCz33NJ3u7vXm8fk9Xzw9PtzSrRecnHBLNSiaaFuuCCo24NIoi6rgsoTJUZXtaATDco8qyFtqwNCIGsNEVTGNSNzpfkcu_d-OFrwjDKzgaNzqkehynInEcdE3kE8z2o_RCCRyM33nbK7yQDOSeVa_mTVM5JJXAZk8bVxa9eBa2c8arXNvxNsxi8EjDbr_ccxr9uLXoZtMVeY2s96lG2g_33nW9MS5Ab</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34799173</pqid></control><display><type>article</type><title>Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gupta, R.K. ; Jagadish Babu, Gunda ; Ranga Janardhan, G. ; Venkateswara Rao, G.</creator><creatorcontrib>Gupta, R.K. ; Jagadish Babu, Gunda ; Ranga Janardhan, G. ; Venkateswara Rao, G.</creatorcontrib><description>Large amplitude free vibration analysis of uniform, slender and isotropic beams is investigated through a relatively simple finite element formulation, applicable to homogenous cubic nonlinear temporal equation (homogenous Duffing equation). All possible boundary conditions where the von-Karman type nonlinearity is applicable, where the ends are axially immovable are considered. The finite element formulation begins with the assumption of the simple harmonic motion and is subsequently corrected using the harmonic balance method and is general for the type of the nonlinearity mentioned earlier. The nonlinear stiffness matrix derived in the present finite element formulation leads to symmetric stiffness matrix as compared to other recent formulations. Empirical formulas for the nonlinear to linear radian frequency ratios, for the boundary conditions considered, are presented using the least square fit from the solutions of the same obtained for various central amplitude ratios. Numerical results using the empirical formulas compare very well with the results available from the literature for the classical boundary conditions such as the hinged–hinged, clamped–clamped and clamped–hinged beams. For the beams with nonclassical boundary conditions such as the hinged–guided and clamped–guided, the numerical results obtained, apparently for the first time and are in line with the physics of the problem.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2009.04.001</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Beams ; Computational techniques ; Exact sciences and technology ; FEM ; Finite-element and galerkin methods ; Free vibration ; Fundamental areas of phenomenology (including applications) ; Iterative solution ; Large amplitude ; Mathematical methods in physics ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Finite elements in analysis and design, 2009-08, Vol.45 (10), p.624-631</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e26a7bd095474ecdfee07999505f82f4690e1cbe732d0d69f077e16f5b5fecbc3</citedby><cites>FETCH-LOGICAL-c364t-e26a7bd095474ecdfee07999505f82f4690e1cbe732d0d69f077e16f5b5fecbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.finel.2009.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21878703$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, R.K.</creatorcontrib><creatorcontrib>Jagadish Babu, Gunda</creatorcontrib><creatorcontrib>Ranga Janardhan, G.</creatorcontrib><creatorcontrib>Venkateswara Rao, G.</creatorcontrib><title>Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams</title><title>Finite elements in analysis and design</title><description>Large amplitude free vibration analysis of uniform, slender and isotropic beams is investigated through a relatively simple finite element formulation, applicable to homogenous cubic nonlinear temporal equation (homogenous Duffing equation). All possible boundary conditions where the von-Karman type nonlinearity is applicable, where the ends are axially immovable are considered. The finite element formulation begins with the assumption of the simple harmonic motion and is subsequently corrected using the harmonic balance method and is general for the type of the nonlinearity mentioned earlier. The nonlinear stiffness matrix derived in the present finite element formulation leads to symmetric stiffness matrix as compared to other recent formulations. Empirical formulas for the nonlinear to linear radian frequency ratios, for the boundary conditions considered, are presented using the least square fit from the solutions of the same obtained for various central amplitude ratios. Numerical results using the empirical formulas compare very well with the results available from the literature for the classical boundary conditions such as the hinged–hinged, clamped–clamped and clamped–hinged beams. For the beams with nonclassical boundary conditions such as the hinged–guided and clamped–guided, the numerical results obtained, apparently for the first time and are in line with the physics of the problem.</description><subject>Beams</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Finite-element and galerkin methods</subject><subject>Free vibration</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Iterative solution</subject><subject>Large amplitude</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI4-gZtsdNd606ZNu3Ah4h8MCKLgLqTpjWZI2zFpB-btTR1x6SpZnO-EHELOGaQMWHm1To3t0aUZQJ0CTwHYAVmwSmRJWWfFIVlEqkoqwd-PyUkIawAospIvCL6gU6PdotvRYLuNQxpVdkSKDjvsR2oG300zM_TznY6fSJ3yH0hVxO04tXHiEenWNv4HC3QwdOrtvKQNqi6ckiOjXMCz33NJ3u7vXm8fk9Xzw9PtzSrRecnHBLNSiaaFuuCCo24NIoi6rgsoTJUZXtaATDco8qyFtqwNCIGsNEVTGNSNzpfkcu_d-OFrwjDKzgaNzqkehynInEcdE3kE8z2o_RCCRyM33nbK7yQDOSeVa_mTVM5JJXAZk8bVxa9eBa2c8arXNvxNsxi8EjDbr_ccxr9uLXoZtMVeY2s96lG2g_33nW9MS5Ab</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Gupta, R.K.</creator><creator>Jagadish Babu, Gunda</creator><creator>Ranga Janardhan, G.</creator><creator>Venkateswara Rao, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090801</creationdate><title>Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams</title><author>Gupta, R.K. ; Jagadish Babu, Gunda ; Ranga Janardhan, G. ; Venkateswara Rao, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e26a7bd095474ecdfee07999505f82f4690e1cbe732d0d69f077e16f5b5fecbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Beams</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Finite-element and galerkin methods</topic><topic>Free vibration</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Iterative solution</topic><topic>Large amplitude</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, R.K.</creatorcontrib><creatorcontrib>Jagadish Babu, Gunda</creatorcontrib><creatorcontrib>Ranga Janardhan, G.</creatorcontrib><creatorcontrib>Venkateswara Rao, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, R.K.</au><au>Jagadish Babu, Gunda</au><au>Ranga Janardhan, G.</au><au>Venkateswara Rao, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>45</volume><issue>10</issue><spage>624</spage><epage>631</epage><pages>624-631</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>Large amplitude free vibration analysis of uniform, slender and isotropic beams is investigated through a relatively simple finite element formulation, applicable to homogenous cubic nonlinear temporal equation (homogenous Duffing equation). All possible boundary conditions where the von-Karman type nonlinearity is applicable, where the ends are axially immovable are considered. The finite element formulation begins with the assumption of the simple harmonic motion and is subsequently corrected using the harmonic balance method and is general for the type of the nonlinearity mentioned earlier. The nonlinear stiffness matrix derived in the present finite element formulation leads to symmetric stiffness matrix as compared to other recent formulations. Empirical formulas for the nonlinear to linear radian frequency ratios, for the boundary conditions considered, are presented using the least square fit from the solutions of the same obtained for various central amplitude ratios. Numerical results using the empirical formulas compare very well with the results available from the literature for the classical boundary conditions such as the hinged–hinged, clamped–clamped and clamped–hinged beams. For the beams with nonclassical boundary conditions such as the hinged–guided and clamped–guided, the numerical results obtained, apparently for the first time and are in line with the physics of the problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2009.04.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-874X
ispartof Finite elements in analysis and design, 2009-08, Vol.45 (10), p.624-631
issn 0168-874X
1872-6925
language eng
recordid cdi_proquest_miscellaneous_34799173
source Access via ScienceDirect (Elsevier)
subjects Beams
Computational techniques
Exact sciences and technology
FEM
Finite-element and galerkin methods
Free vibration
Fundamental areas of phenomenology (including applications)
Iterative solution
Large amplitude
Mathematical methods in physics
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relatively%20simple%20finite%20element%20formulation%20for%20the%20large%20amplitude%20free%20vibrations%20of%20uniform%20beams&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Gupta,%20R.K.&rft.date=2009-08-01&rft.volume=45&rft.issue=10&rft.spage=624&rft.epage=631&rft.pages=624-631&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2009.04.001&rft_dat=%3Cproquest_cross%3E34799173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34799173&rft_id=info:pmid/&rft_els_id=S0168874X09000523&rfr_iscdi=true