Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication

The nutrient enrichment of rivers and its consequences are among the most severe water quality problems in Europe, causing eutrophication and other problems. The decision-making processes involved in the management of these problems require extensive human expertise from people who deal directly wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2009-09, Vol.220 (18), p.2162-2172
Hauptverfasser: Llorens, Esther, Comas, Joaquim, Martí, Eugènia, Riera, Joan Lluís, Sabater, Francesc, Poch, Manel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2172
container_issue 18
container_start_page 2162
container_title Ecological modelling
container_volume 220
creator Llorens, Esther
Comas, Joaquim
Martí, Eugènia
Riera, Joan Lluís
Sabater, Francesc
Poch, Manel
description The nutrient enrichment of rivers and its consequences are among the most severe water quality problems in Europe, causing eutrophication and other problems. The decision-making processes involved in the management of these problems require extensive human expertise from people who deal directly with day-to-day stream problems, as well as empirical knowledge based on scientific research. This means that eutrophication is a complex problem, the optimal management of which requires an integrated and multidisciplinary approach. This approach can be taken using a Knowledge-Based System (KBS) built upon the concepts and methods of human reasoning. Accordingly, a KBS was developed within the STREAMES project. In this KBS most of the knowledge needed for managing eutrophication problems was organised and structured in the form of a decision tree (DT). The methodology specially developed to build this KBS, as well as the internal structure of the eutrophication decision tree, is presented here. The good DT obtained led to consider the KBS a suitable tool to support the management of eutrophication.
doi_str_mv 10.1016/j.ecolmodel.2009.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34795878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380009003949</els_id><sourcerecordid>20760442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-daa9d59039d7adc64b5a66f7938b54ef6325eab9cb90779ad7b26c7be9d07e973</originalsourceid><addsrcrecordid>eNqFkcFO3DAURa2KSh1ov6FeoW4Snp3EjpcUAR2B1AVFYmc59psZD0kcbIeKv2_QVF12Vm9z7tXTPYR8ZVAyYOJiX6IN_RAc9iUHUCWIEhj_QFaslbyQwMUJWUEFdVG1AJ_IaUp7gAVp-Yo8rceM22iyH7cUh8lHb01PzejoDufoU_aWPo_hd49ui9SP1NC77w80B2qmKQZjdzTliGagOOcYpt2Szz6Mn8nHjekTfvl7z8jjzfWvqx_F_c_b9dXlfWFrBrlwxijXKKiUk8ZZUXeNEWIjVdV2TY0bUfEGTadsp0BKZZzsuLCyQ-VAopLVGTk_9C7PvMyYsh58stj3ZsQwJ13VUjWtbI-CHKSAuuYL-O2_IJOCM9a0qlpQeUBtDClF3Ogp-sHEN81Av9vRe_3Pjn63o0HoZfoleXlI4rLNq8eok_U4WnQ-os3aBX-04w-BXJ3H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762115893</pqid></control><display><type>article</type><title>Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication</title><source>Elsevier ScienceDirect Journals</source><creator>Llorens, Esther ; Comas, Joaquim ; Martí, Eugènia ; Riera, Joan Lluís ; Sabater, Francesc ; Poch, Manel</creator><creatorcontrib>Llorens, Esther ; Comas, Joaquim ; Martí, Eugènia ; Riera, Joan Lluís ; Sabater, Francesc ; Poch, Manel</creatorcontrib><description>The nutrient enrichment of rivers and its consequences are among the most severe water quality problems in Europe, causing eutrophication and other problems. The decision-making processes involved in the management of these problems require extensive human expertise from people who deal directly with day-to-day stream problems, as well as empirical knowledge based on scientific research. This means that eutrophication is a complex problem, the optimal management of which requires an integrated and multidisciplinary approach. This approach can be taken using a Knowledge-Based System (KBS) built upon the concepts and methods of human reasoning. Accordingly, a KBS was developed within the STREAMES project. In this KBS most of the knowledge needed for managing eutrophication problems was organised and structured in the form of a decision tree (DT). The methodology specially developed to build this KBS, as well as the internal structure of the eutrophication decision tree, is presented here. The good DT obtained led to consider the KBS a suitable tool to support the management of eutrophication.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2009.06.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Construction ; Decision trees ; Empirical analysis ; Eutrophication ; Human ; Knowledge base ; Knowledge-based system ; Management ; Mediterranean ; Stream ; Streams ; Water quality</subject><ispartof>Ecological modelling, 2009-09, Vol.220 (18), p.2162-2172</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-daa9d59039d7adc64b5a66f7938b54ef6325eab9cb90779ad7b26c7be9d07e973</citedby><cites>FETCH-LOGICAL-c410t-daa9d59039d7adc64b5a66f7938b54ef6325eab9cb90779ad7b26c7be9d07e973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304380009003949$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Llorens, Esther</creatorcontrib><creatorcontrib>Comas, Joaquim</creatorcontrib><creatorcontrib>Martí, Eugènia</creatorcontrib><creatorcontrib>Riera, Joan Lluís</creatorcontrib><creatorcontrib>Sabater, Francesc</creatorcontrib><creatorcontrib>Poch, Manel</creatorcontrib><title>Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication</title><title>Ecological modelling</title><description>The nutrient enrichment of rivers and its consequences are among the most severe water quality problems in Europe, causing eutrophication and other problems. The decision-making processes involved in the management of these problems require extensive human expertise from people who deal directly with day-to-day stream problems, as well as empirical knowledge based on scientific research. This means that eutrophication is a complex problem, the optimal management of which requires an integrated and multidisciplinary approach. This approach can be taken using a Knowledge-Based System (KBS) built upon the concepts and methods of human reasoning. Accordingly, a KBS was developed within the STREAMES project. In this KBS most of the knowledge needed for managing eutrophication problems was organised and structured in the form of a decision tree (DT). The methodology specially developed to build this KBS, as well as the internal structure of the eutrophication decision tree, is presented here. The good DT obtained led to consider the KBS a suitable tool to support the management of eutrophication.</description><subject>Construction</subject><subject>Decision trees</subject><subject>Empirical analysis</subject><subject>Eutrophication</subject><subject>Human</subject><subject>Knowledge base</subject><subject>Knowledge-based system</subject><subject>Management</subject><subject>Mediterranean</subject><subject>Stream</subject><subject>Streams</subject><subject>Water quality</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAURa2KSh1ov6FeoW4Snp3EjpcUAR2B1AVFYmc59psZD0kcbIeKv2_QVF12Vm9z7tXTPYR8ZVAyYOJiX6IN_RAc9iUHUCWIEhj_QFaslbyQwMUJWUEFdVG1AJ_IaUp7gAVp-Yo8rceM22iyH7cUh8lHb01PzejoDufoU_aWPo_hd49ui9SP1NC77w80B2qmKQZjdzTliGagOOcYpt2Szz6Mn8nHjekTfvl7z8jjzfWvqx_F_c_b9dXlfWFrBrlwxijXKKiUk8ZZUXeNEWIjVdV2TY0bUfEGTadsp0BKZZzsuLCyQ-VAopLVGTk_9C7PvMyYsh58stj3ZsQwJ13VUjWtbI-CHKSAuuYL-O2_IJOCM9a0qlpQeUBtDClF3Ogp-sHEN81Av9vRe_3Pjn63o0HoZfoleXlI4rLNq8eok_U4WnQ-os3aBX-04w-BXJ3H</recordid><startdate>20090924</startdate><enddate>20090924</enddate><creator>Llorens, Esther</creator><creator>Comas, Joaquim</creator><creator>Martí, Eugènia</creator><creator>Riera, Joan Lluís</creator><creator>Sabater, Francesc</creator><creator>Poch, Manel</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7SN</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20090924</creationdate><title>Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication</title><author>Llorens, Esther ; Comas, Joaquim ; Martí, Eugènia ; Riera, Joan Lluís ; Sabater, Francesc ; Poch, Manel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-daa9d59039d7adc64b5a66f7938b54ef6325eab9cb90779ad7b26c7be9d07e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Construction</topic><topic>Decision trees</topic><topic>Empirical analysis</topic><topic>Eutrophication</topic><topic>Human</topic><topic>Knowledge base</topic><topic>Knowledge-based system</topic><topic>Management</topic><topic>Mediterranean</topic><topic>Stream</topic><topic>Streams</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens, Esther</creatorcontrib><creatorcontrib>Comas, Joaquim</creatorcontrib><creatorcontrib>Martí, Eugènia</creatorcontrib><creatorcontrib>Riera, Joan Lluís</creatorcontrib><creatorcontrib>Sabater, Francesc</creatorcontrib><creatorcontrib>Poch, Manel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens, Esther</au><au>Comas, Joaquim</au><au>Martí, Eugènia</au><au>Riera, Joan Lluís</au><au>Sabater, Francesc</au><au>Poch, Manel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication</atitle><jtitle>Ecological modelling</jtitle><date>2009-09-24</date><risdate>2009</risdate><volume>220</volume><issue>18</issue><spage>2162</spage><epage>2172</epage><pages>2162-2172</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><abstract>The nutrient enrichment of rivers and its consequences are among the most severe water quality problems in Europe, causing eutrophication and other problems. The decision-making processes involved in the management of these problems require extensive human expertise from people who deal directly with day-to-day stream problems, as well as empirical knowledge based on scientific research. This means that eutrophication is a complex problem, the optimal management of which requires an integrated and multidisciplinary approach. This approach can be taken using a Knowledge-Based System (KBS) built upon the concepts and methods of human reasoning. Accordingly, a KBS was developed within the STREAMES project. In this KBS most of the knowledge needed for managing eutrophication problems was organised and structured in the form of a decision tree (DT). The methodology specially developed to build this KBS, as well as the internal structure of the eutrophication decision tree, is presented here. The good DT obtained led to consider the KBS a suitable tool to support the management of eutrophication.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2009.06.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2009-09, Vol.220 (18), p.2162-2172
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_34795878
source Elsevier ScienceDirect Journals
subjects Construction
Decision trees
Empirical analysis
Eutrophication
Human
Knowledge base
Knowledge-based system
Management
Mediterranean
Stream
Streams
Water quality
title Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20empirical%20and%20heuristic%20knowledge%20in%20a%20KBS%20to%20approach%20stream%20eutrophication&rft.jtitle=Ecological%20modelling&rft.au=Llorens,%20Esther&rft.date=2009-09-24&rft.volume=220&rft.issue=18&rft.spage=2162&rft.epage=2172&rft.pages=2162-2172&rft.issn=0304-3800&rft.eissn=1872-7026&rft_id=info:doi/10.1016/j.ecolmodel.2009.06.012&rft_dat=%3Cproquest_cross%3E20760442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762115893&rft_id=info:pmid/&rft_els_id=S0304380009003949&rfr_iscdi=true