A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions

A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2009-10, Vol.180 (10), p.1839-1846
Hauptverfasser: Papadopoulos, D.F., Anastassi, Z.A., Simos, T.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1846
container_issue 10
container_start_page 1839
container_title Computer physics communications
container_volume 180
creator Papadopoulos, D.F.
Anastassi, Z.A.
Simos, T.E.
description A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.
doi_str_mv 10.1016/j.cpc.2009.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34787203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465509001623</els_id><sourcerecordid>34787203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</originalsourceid><addsrcrecordid>eNp9kEFu2zAURImgAeImPUB2XHUn9VMiTQlZGUaSFjFaIEjXhER92jQk0SUpB9kUvUPvkgv0JjlJaTjIMqsBPuZ9zAwhlwxyBmz-ZZvrnc4LgDoHkQPjJ2TGKllnRc35BzIDYJDxuRBn5GMIWwCQsi5n5PeC7jZNwMzYGLGj99O4xpc_f--mGJuk359C9P-eBzpg3LiOGudp3CAdpwG91U1Pg-unaN1InaF2tNGm277pJ6Q779oeh0AfbdxQF7Tt-ybacf3GhAtyapo-4KdXPSc_b64fll-z1Y_bb8vFKtOlZDErQBvDazYXWJqWw7xAUVcVF7w2tew4M0KL1kjNtKyaVrSd4GXVVi1URgjWlufk8_FvyvRrwhDVYIPGlGdENwVVclnJAspkZEej9i4Ej0btvB0a_6QYqMPSaqvS0uqwtAKh0tKJuToymBrsLXqVquKosbMedVSds-_Q_wELnIwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34787203</pqid></control><display><type>article</type><title>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</title><source>Elsevier ScienceDirect Journals</source><creator>Papadopoulos, D.F. ; Anastassi, Z.A. ; Simos, T.E.</creator><creatorcontrib>Papadopoulos, D.F. ; Anastassi, Z.A. ; Simos, T.E.</creatorcontrib><description>A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2009.05.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Initial-value problems ; Phase-fitted ; Phase-lag infinity ; Runge–Kutta–Nyström methods</subject><ispartof>Computer physics communications, 2009-10, Vol.180 (10), p.1839-1846</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</citedby><cites>FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465509001623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Papadopoulos, D.F.</creatorcontrib><creatorcontrib>Anastassi, Z.A.</creatorcontrib><creatorcontrib>Simos, T.E.</creatorcontrib><title>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</title><title>Computer physics communications</title><description>A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.</description><subject>Initial-value problems</subject><subject>Phase-fitted</subject><subject>Phase-lag infinity</subject><subject>Runge–Kutta–Nyström methods</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFu2zAURImgAeImPUB2XHUn9VMiTQlZGUaSFjFaIEjXhER92jQk0SUpB9kUvUPvkgv0JjlJaTjIMqsBPuZ9zAwhlwxyBmz-ZZvrnc4LgDoHkQPjJ2TGKllnRc35BzIDYJDxuRBn5GMIWwCQsi5n5PeC7jZNwMzYGLGj99O4xpc_f--mGJuk359C9P-eBzpg3LiOGudp3CAdpwG91U1Pg-unaN1InaF2tNGm277pJ6Q779oeh0AfbdxQF7Tt-ybacf3GhAtyapo-4KdXPSc_b64fll-z1Y_bb8vFKtOlZDErQBvDazYXWJqWw7xAUVcVF7w2tew4M0KL1kjNtKyaVrSd4GXVVi1URgjWlufk8_FvyvRrwhDVYIPGlGdENwVVclnJAspkZEej9i4Ej0btvB0a_6QYqMPSaqvS0uqwtAKh0tKJuToymBrsLXqVquKosbMedVSds-_Q_wELnIwO</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Papadopoulos, D.F.</creator><creator>Anastassi, Z.A.</creator><creator>Simos, T.E.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</title><author>Papadopoulos, D.F. ; Anastassi, Z.A. ; Simos, T.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Initial-value problems</topic><topic>Phase-fitted</topic><topic>Phase-lag infinity</topic><topic>Runge–Kutta–Nyström methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, D.F.</creatorcontrib><creatorcontrib>Anastassi, Z.A.</creatorcontrib><creatorcontrib>Simos, T.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadopoulos, D.F.</au><au>Anastassi, Z.A.</au><au>Simos, T.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</atitle><jtitle>Computer physics communications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>180</volume><issue>10</issue><spage>1839</spage><epage>1846</epage><pages>1839-1846</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2009.05.014</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2009-10, Vol.180 (10), p.1839-1846
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_34787203
source Elsevier ScienceDirect Journals
subjects Initial-value problems
Phase-fitted
Phase-lag infinity
Runge–Kutta–Nyström methods
title A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase-fitted%20Runge%E2%80%93Kutta%E2%80%93Nystr%C3%B6m%20method%20for%20the%20numerical%20solution%20of%20initial%20value%20problems%20with%20oscillating%20solutions&rft.jtitle=Computer%20physics%20communications&rft.au=Papadopoulos,%20D.F.&rft.date=2009-10-01&rft.volume=180&rft.issue=10&rft.spage=1839&rft.epage=1846&rft.pages=1839-1846&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2009.05.014&rft_dat=%3Cproquest_cross%3E34787203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34787203&rft_id=info:pmid/&rft_els_id=S0010465509001623&rfr_iscdi=true