A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions
A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effect...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2009-10, Vol.180 (10), p.1839-1846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1846 |
---|---|
container_issue | 10 |
container_start_page | 1839 |
container_title | Computer physics communications |
container_volume | 180 |
creator | Papadopoulos, D.F. Anastassi, Z.A. Simos, T.E. |
description | A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity. |
doi_str_mv | 10.1016/j.cpc.2009.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34787203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465509001623</els_id><sourcerecordid>34787203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</originalsourceid><addsrcrecordid>eNp9kEFu2zAURImgAeImPUB2XHUn9VMiTQlZGUaSFjFaIEjXhER92jQk0SUpB9kUvUPvkgv0JjlJaTjIMqsBPuZ9zAwhlwxyBmz-ZZvrnc4LgDoHkQPjJ2TGKllnRc35BzIDYJDxuRBn5GMIWwCQsi5n5PeC7jZNwMzYGLGj99O4xpc_f--mGJuk359C9P-eBzpg3LiOGudp3CAdpwG91U1Pg-unaN1InaF2tNGm277pJ6Q779oeh0AfbdxQF7Tt-ybacf3GhAtyapo-4KdXPSc_b64fll-z1Y_bb8vFKtOlZDErQBvDazYXWJqWw7xAUVcVF7w2tew4M0KL1kjNtKyaVrSd4GXVVi1URgjWlufk8_FvyvRrwhDVYIPGlGdENwVVclnJAspkZEej9i4Ej0btvB0a_6QYqMPSaqvS0uqwtAKh0tKJuToymBrsLXqVquKosbMedVSds-_Q_wELnIwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34787203</pqid></control><display><type>article</type><title>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</title><source>Elsevier ScienceDirect Journals</source><creator>Papadopoulos, D.F. ; Anastassi, Z.A. ; Simos, T.E.</creator><creatorcontrib>Papadopoulos, D.F. ; Anastassi, Z.A. ; Simos, T.E.</creatorcontrib><description>A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2009.05.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Initial-value problems ; Phase-fitted ; Phase-lag infinity ; Runge–Kutta–Nyström methods</subject><ispartof>Computer physics communications, 2009-10, Vol.180 (10), p.1839-1846</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</citedby><cites>FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465509001623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Papadopoulos, D.F.</creatorcontrib><creatorcontrib>Anastassi, Z.A.</creatorcontrib><creatorcontrib>Simos, T.E.</creatorcontrib><title>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</title><title>Computer physics communications</title><description>A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.</description><subject>Initial-value problems</subject><subject>Phase-fitted</subject><subject>Phase-lag infinity</subject><subject>Runge–Kutta–Nyström methods</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFu2zAURImgAeImPUB2XHUn9VMiTQlZGUaSFjFaIEjXhER92jQk0SUpB9kUvUPvkgv0JjlJaTjIMqsBPuZ9zAwhlwxyBmz-ZZvrnc4LgDoHkQPjJ2TGKllnRc35BzIDYJDxuRBn5GMIWwCQsi5n5PeC7jZNwMzYGLGj99O4xpc_f--mGJuk359C9P-eBzpg3LiOGudp3CAdpwG91U1Pg-unaN1InaF2tNGm277pJ6Q779oeh0AfbdxQF7Tt-ybacf3GhAtyapo-4KdXPSc_b64fll-z1Y_bb8vFKtOlZDErQBvDazYXWJqWw7xAUVcVF7w2tew4M0KL1kjNtKyaVrSd4GXVVi1URgjWlufk8_FvyvRrwhDVYIPGlGdENwVVclnJAspkZEej9i4Ej0btvB0a_6QYqMPSaqvS0uqwtAKh0tKJuToymBrsLXqVquKosbMedVSds-_Q_wELnIwO</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Papadopoulos, D.F.</creator><creator>Anastassi, Z.A.</creator><creator>Simos, T.E.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</title><author>Papadopoulos, D.F. ; Anastassi, Z.A. ; Simos, T.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-20cff49165e3fb4062e59884549f97d41f5c5bf7c1c78ab5bd5438b8b08f551b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Initial-value problems</topic><topic>Phase-fitted</topic><topic>Phase-lag infinity</topic><topic>Runge–Kutta–Nyström methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, D.F.</creatorcontrib><creatorcontrib>Anastassi, Z.A.</creatorcontrib><creatorcontrib>Simos, T.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadopoulos, D.F.</au><au>Anastassi, Z.A.</au><au>Simos, T.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions</atitle><jtitle>Computer physics communications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>180</volume><issue>10</issue><spage>1839</spage><epage>1846</epage><pages>1839-1846</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>A new Runge–Kutta–Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge–Kutta–Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2009.05.014</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2009-10, Vol.180 (10), p.1839-1846 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_34787203 |
source | Elsevier ScienceDirect Journals |
subjects | Initial-value problems Phase-fitted Phase-lag infinity Runge–Kutta–Nyström methods |
title | A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase-fitted%20Runge%E2%80%93Kutta%E2%80%93Nystr%C3%B6m%20method%20for%20the%20numerical%20solution%20of%20initial%20value%20problems%20with%20oscillating%20solutions&rft.jtitle=Computer%20physics%20communications&rft.au=Papadopoulos,%20D.F.&rft.date=2009-10-01&rft.volume=180&rft.issue=10&rft.spage=1839&rft.epage=1846&rft.pages=1839-1846&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2009.05.014&rft_dat=%3Cproquest_cross%3E34787203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34787203&rft_id=info:pmid/&rft_els_id=S0010465509001623&rfr_iscdi=true |