Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations
In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the met...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2008-11, Vol.104 (2), p.161-171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 2 |
container_start_page | 161 |
container_title | Acta applicandae mathematicae |
container_volume | 104 |
creator | Barari, A. Omidvar, M. Ghotbi, Abdoul R. Ganji, D. D. |
description | In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned. |
doi_str_mv | 10.1007/s10440-008-9248-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34785485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1562963471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</originalsourceid><addsrcrecordid>eNp1kUtLxDAQx4MouD4-gLfgwVs1r6bJUXyDr4N6DWl3qpFuU5P0sPjlzW4FUfAyA5Pfb5jwR-iAkmNKSHUSKRGCFISoQjORywaa0bJihSZcbqIZobIqFKF6G-3E-E4I4VrKGfo8HYbONTY532Pf4mu_8MkPS_wIIY2hnh7uIL35Obb9HL_Y4NZD2-GbBOEXkDy-933nerABP8TGdZ1NPuBz17YQoE8uWxcf41qKe2irtV2E_e--i54vL57Orovbh6ubs9PbouFCpkJIbuclazS1iirGNLQAVttGwVzkMSeCs1rxFiijtajKsqq5lLoCRYmtGd9FR9PeIfiPEWIyCxcbyLf14MdouKhUKVSZwcM_4LsfQ_5pNIxypSXjOkN0gprgYwzQmiG4hQ1LQ4lZZWGmLEzOwqyyMCuHTU7MbP8K4Wfx_9IXWQKN9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213896239</pqid></control><display><type>article</type><title>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</title><source>SpringerNature Journals</source><creator>Barari, A. ; Omidvar, M. ; Ghotbi, Abdoul R. ; Ganji, D. D.</creator><creatorcontrib>Barari, A. ; Omidvar, M. ; Ghotbi, Abdoul R. ; Ganji, D. D.</creatorcontrib><description>In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-008-9248-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Applied mathematics ; Approximation ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Engineering ; Mathematics ; Mathematics and Statistics ; Methods ; Nonlinear programming ; Oscillators ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Research methodology ; Studies</subject><ispartof>Acta applicandae mathematicae, 2008-11, Vol.104 (2), p.161-171</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</citedby><cites>FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-008-9248-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-008-9248-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Barari, A.</creatorcontrib><creatorcontrib>Omidvar, M.</creatorcontrib><creatorcontrib>Ghotbi, Abdoul R.</creatorcontrib><creatorcontrib>Ganji, D. D.</creatorcontrib><title>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nonlinear programming</subject><subject>Oscillators</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Research methodology</subject><subject>Studies</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtLxDAQx4MouD4-gLfgwVs1r6bJUXyDr4N6DWl3qpFuU5P0sPjlzW4FUfAyA5Pfb5jwR-iAkmNKSHUSKRGCFISoQjORywaa0bJihSZcbqIZobIqFKF6G-3E-E4I4VrKGfo8HYbONTY532Pf4mu_8MkPS_wIIY2hnh7uIL35Obb9HL_Y4NZD2-GbBOEXkDy-933nerABP8TGdZ1NPuBz17YQoE8uWxcf41qKe2irtV2E_e--i54vL57Orovbh6ubs9PbouFCpkJIbuclazS1iirGNLQAVttGwVzkMSeCs1rxFiijtajKsqq5lLoCRYmtGd9FR9PeIfiPEWIyCxcbyLf14MdouKhUKVSZwcM_4LsfQ_5pNIxypSXjOkN0gprgYwzQmiG4hQ1LQ4lZZWGmLEzOwqyyMCuHTU7MbP8K4Wfx_9IXWQKN9g</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Barari, A.</creator><creator>Omidvar, M.</creator><creator>Ghotbi, Abdoul R.</creator><creator>Ganji, D. D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</title><author>Barari, A. ; Omidvar, M. ; Ghotbi, Abdoul R. ; Ganji, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nonlinear programming</topic><topic>Oscillators</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Research methodology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barari, A.</creatorcontrib><creatorcontrib>Omidvar, M.</creatorcontrib><creatorcontrib>Ghotbi, Abdoul R.</creatorcontrib><creatorcontrib>Ganji, D. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barari, A.</au><au>Omidvar, M.</au><au>Ghotbi, Abdoul R.</au><au>Ganji, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>104</volume><issue>2</issue><spage>161</spage><epage>171</epage><pages>161-171</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-008-9248-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2008-11, Vol.104 (2), p.161-171 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_miscellaneous_34785485 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Applied mathematics Approximation Boundary conditions Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Engineering Mathematics Mathematics and Statistics Methods Nonlinear programming Oscillators Partial Differential Equations Probability Theory and Stochastic Processes Research methodology Studies |
title | Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Homotopy%20Perturbation%20Method%20and%20Variational%20Iteration%20Method%20to%20Nonlinear%20Oscillator%20Differential%20Equations&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Barari,%20A.&rft.date=2008-11-01&rft.volume=104&rft.issue=2&rft.spage=161&rft.epage=171&rft.pages=161-171&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-008-9248-9&rft_dat=%3Cproquest_cross%3E1562963471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213896239&rft_id=info:pmid/&rfr_iscdi=true |