Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations

In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2008-11, Vol.104 (2), p.161-171
Hauptverfasser: Barari, A., Omidvar, M., Ghotbi, Abdoul R., Ganji, D. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 2
container_start_page 161
container_title Acta applicandae mathematicae
container_volume 104
creator Barari, A.
Omidvar, M.
Ghotbi, Abdoul R.
Ganji, D. D.
description In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.
doi_str_mv 10.1007/s10440-008-9248-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34785485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1562963471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</originalsourceid><addsrcrecordid>eNp1kUtLxDAQx4MouD4-gLfgwVs1r6bJUXyDr4N6DWl3qpFuU5P0sPjlzW4FUfAyA5Pfb5jwR-iAkmNKSHUSKRGCFISoQjORywaa0bJihSZcbqIZobIqFKF6G-3E-E4I4VrKGfo8HYbONTY532Pf4mu_8MkPS_wIIY2hnh7uIL35Obb9HL_Y4NZD2-GbBOEXkDy-933nerABP8TGdZ1NPuBz17YQoE8uWxcf41qKe2irtV2E_e--i54vL57Orovbh6ubs9PbouFCpkJIbuclazS1iirGNLQAVttGwVzkMSeCs1rxFiijtajKsqq5lLoCRYmtGd9FR9PeIfiPEWIyCxcbyLf14MdouKhUKVSZwcM_4LsfQ_5pNIxypSXjOkN0gprgYwzQmiG4hQ1LQ4lZZWGmLEzOwqyyMCuHTU7MbP8K4Wfx_9IXWQKN9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213896239</pqid></control><display><type>article</type><title>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</title><source>SpringerNature Journals</source><creator>Barari, A. ; Omidvar, M. ; Ghotbi, Abdoul R. ; Ganji, D. D.</creator><creatorcontrib>Barari, A. ; Omidvar, M. ; Ghotbi, Abdoul R. ; Ganji, D. D.</creatorcontrib><description>In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-008-9248-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Applied mathematics ; Approximation ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Engineering ; Mathematics ; Mathematics and Statistics ; Methods ; Nonlinear programming ; Oscillators ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Research methodology ; Studies</subject><ispartof>Acta applicandae mathematicae, 2008-11, Vol.104 (2), p.161-171</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</citedby><cites>FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-008-9248-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-008-9248-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Barari, A.</creatorcontrib><creatorcontrib>Omidvar, M.</creatorcontrib><creatorcontrib>Ghotbi, Abdoul R.</creatorcontrib><creatorcontrib>Ganji, D. D.</creatorcontrib><title>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nonlinear programming</subject><subject>Oscillators</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Research methodology</subject><subject>Studies</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtLxDAQx4MouD4-gLfgwVs1r6bJUXyDr4N6DWl3qpFuU5P0sPjlzW4FUfAyA5Pfb5jwR-iAkmNKSHUSKRGCFISoQjORywaa0bJihSZcbqIZobIqFKF6G-3E-E4I4VrKGfo8HYbONTY532Pf4mu_8MkPS_wIIY2hnh7uIL35Obb9HL_Y4NZD2-GbBOEXkDy-933nerABP8TGdZ1NPuBz17YQoE8uWxcf41qKe2irtV2E_e--i54vL57Orovbh6ubs9PbouFCpkJIbuclazS1iirGNLQAVttGwVzkMSeCs1rxFiijtajKsqq5lLoCRYmtGd9FR9PeIfiPEWIyCxcbyLf14MdouKhUKVSZwcM_4LsfQ_5pNIxypSXjOkN0gprgYwzQmiG4hQ1LQ4lZZWGmLEzOwqyyMCuHTU7MbP8K4Wfx_9IXWQKN9g</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Barari, A.</creator><creator>Omidvar, M.</creator><creator>Ghotbi, Abdoul R.</creator><creator>Ganji, D. D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</title><author>Barari, A. ; Omidvar, M. ; Ghotbi, Abdoul R. ; Ganji, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-463ad52c91a818229efeea9ac8ed42c930432b83fe121b47557b36697e810ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nonlinear programming</topic><topic>Oscillators</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Research methodology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barari, A.</creatorcontrib><creatorcontrib>Omidvar, M.</creatorcontrib><creatorcontrib>Ghotbi, Abdoul R.</creatorcontrib><creatorcontrib>Ganji, D. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barari, A.</au><au>Omidvar, M.</au><au>Ghotbi, Abdoul R.</au><au>Ganji, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>104</volume><issue>2</issue><spage>161</spage><epage>171</epage><pages>161-171</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-008-9248-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2008-11, Vol.104 (2), p.161-171
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_miscellaneous_34785485
source SpringerNature Journals
subjects Applications of Mathematics
Applied mathematics
Approximation
Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Engineering
Mathematics
Mathematics and Statistics
Methods
Nonlinear programming
Oscillators
Partial Differential Equations
Probability Theory and Stochastic Processes
Research methodology
Studies
title Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Homotopy%20Perturbation%20Method%20and%20Variational%20Iteration%20Method%20to%20Nonlinear%20Oscillator%20Differential%20Equations&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Barari,%20A.&rft.date=2008-11-01&rft.volume=104&rft.issue=2&rft.spage=161&rft.epage=171&rft.pages=161-171&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-008-9248-9&rft_dat=%3Cproquest_cross%3E1562963471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213896239&rft_id=info:pmid/&rfr_iscdi=true