On Probability and Moment Inequalities for Supermartingales and Martingales

Burkholder's type inequality is stated for the special class of martingales, namely the product of independent random variables. The constants in the latter are much less than in the general case which is considered in Nagaev (Acta Appl. Math. 79, 35-46, 2003; Teor. Veroyatn. i Primenen. 51(2),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2007-07, Vol.97 (1-3), p.151-162
1. Verfasser: Nagaev, S V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1-3
container_start_page 151
container_title Acta applicandae mathematicae
container_volume 97
creator Nagaev, S V
description Burkholder's type inequality is stated for the special class of martingales, namely the product of independent random variables. The constants in the latter are much less than in the general case which is considered in Nagaev (Acta Appl. Math. 79, 35-46, 2003; Teor. Veroyatn. i Primenen. 51(2), 391-400, 2006). On the other hand, the moment inequality is proved, which extends these by Wittle (Teor. Veroyatn. i Primenen. 5(3), 331-334, 1960) and Dharmadhikari and Jogdeo (Ann. Math. Stat. 40(4), 1506-1508, 1969) to martingales.
doi_str_mv 10.1007/s10440-007-9131-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34779303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21345412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-fdda9cc14cd172b3eb45ceaab2ef69668b931b626215270334032ca3c56e78da3</originalsourceid><addsrcrecordid>eNqN0VFLHDEQB_AgCp7aD-Db0kLxZetMJptsHuVorXBygvY5ZLPZsrK3eya7D36bfhY_mdmeIBS0PmUy_BKG-TN2ivANAdR5RBAC8lTmGglz2GMLLBTPNZDcZwtAqfISUB-yoxjvAYC0lAu2WvfZTRgqW7VdOz5mtq-z62Hj-zG76v3DZFO39TFrhvD053ba-rCxYWz737ZL3b_69X7CDhrbRf_p5Txmv358v1v-zFfry6vlxSp3gssxb-raaudQuBoVr8hXonDe2or7RqapykoTVpJLjgVXQCSAuLPkCulVWVs6Zl93_27D8DD5OJpNG53vOtv7YYqGhFKa0sP_QY5UcAniI1AUAnmCZ-_CtGalNS9JJvrlH3o_TKFPizFcyoJKwRGT-vymQiq1UmpGuEMuDDEG35htaFMQjwbBzPmbXf5mLuf8DdAz12Shrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213897771</pqid></control><display><type>article</type><title>On Probability and Moment Inequalities for Supermartingales and Martingales</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nagaev, S V</creator><creatorcontrib>Nagaev, S V</creatorcontrib><description>Burkholder's type inequality is stated for the special class of martingales, namely the product of independent random variables. The constants in the latter are much less than in the general case which is considered in Nagaev (Acta Appl. Math. 79, 35-46, 2003; Teor. Veroyatn. i Primenen. 51(2), 391-400, 2006). On the other hand, the moment inequality is proved, which extends these by Wittle (Teor. Veroyatn. i Primenen. 5(3), 331-334, 1960) and Dharmadhikari and Jogdeo (Ann. Math. Stat. 40(4), 1506-1508, 1969) to martingales.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-007-9131-0</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Constants ; Independent variables ; Inequalities ; Inequality ; Martingales ; Mathematical models ; Mathematics ; Probability ; Random variables ; Studies ; Theory</subject><ispartof>Acta applicandae mathematicae, 2007-07, Vol.97 (1-3), p.151-162</ispartof><rights>Springer Science + Business Media B.V. 2007</rights><rights>Springer Science + Business Media B.V. 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-fdda9cc14cd172b3eb45ceaab2ef69668b931b626215270334032ca3c56e78da3</citedby><cites>FETCH-LOGICAL-c426t-fdda9cc14cd172b3eb45ceaab2ef69668b931b626215270334032ca3c56e78da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nagaev, S V</creatorcontrib><title>On Probability and Moment Inequalities for Supermartingales and Martingales</title><title>Acta applicandae mathematicae</title><description>Burkholder's type inequality is stated for the special class of martingales, namely the product of independent random variables. The constants in the latter are much less than in the general case which is considered in Nagaev (Acta Appl. Math. 79, 35-46, 2003; Teor. Veroyatn. i Primenen. 51(2), 391-400, 2006). On the other hand, the moment inequality is proved, which extends these by Wittle (Teor. Veroyatn. i Primenen. 5(3), 331-334, 1960) and Dharmadhikari and Jogdeo (Ann. Math. Stat. 40(4), 1506-1508, 1969) to martingales.</description><subject>Constants</subject><subject>Independent variables</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Random variables</subject><subject>Studies</subject><subject>Theory</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0VFLHDEQB_AgCp7aD-Db0kLxZetMJptsHuVorXBygvY5ZLPZsrK3eya7D36bfhY_mdmeIBS0PmUy_BKG-TN2ivANAdR5RBAC8lTmGglz2GMLLBTPNZDcZwtAqfISUB-yoxjvAYC0lAu2WvfZTRgqW7VdOz5mtq-z62Hj-zG76v3DZFO39TFrhvD053ba-rCxYWz737ZL3b_69X7CDhrbRf_p5Txmv358v1v-zFfry6vlxSp3gssxb-raaudQuBoVr8hXonDe2or7RqapykoTVpJLjgVXQCSAuLPkCulVWVs6Zl93_27D8DD5OJpNG53vOtv7YYqGhFKa0sP_QY5UcAniI1AUAnmCZ-_CtGalNS9JJvrlH3o_TKFPizFcyoJKwRGT-vymQiq1UmpGuEMuDDEG35htaFMQjwbBzPmbXf5mLuf8DdAz12Shrw</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Nagaev, S V</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>PRINS</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20070701</creationdate><title>On Probability and Moment Inequalities for Supermartingales and Martingales</title><author>Nagaev, S V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-fdda9cc14cd172b3eb45ceaab2ef69668b931b626215270334032ca3c56e78da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Constants</topic><topic>Independent variables</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Random variables</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaev, S V</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaev, S V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Probability and Moment Inequalities for Supermartingales and Martingales</atitle><jtitle>Acta applicandae mathematicae</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>97</volume><issue>1-3</issue><spage>151</spage><epage>162</epage><pages>151-162</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>Burkholder's type inequality is stated for the special class of martingales, namely the product of independent random variables. The constants in the latter are much less than in the general case which is considered in Nagaev (Acta Appl. Math. 79, 35-46, 2003; Teor. Veroyatn. i Primenen. 51(2), 391-400, 2006). On the other hand, the moment inequality is proved, which extends these by Wittle (Teor. Veroyatn. i Primenen. 5(3), 331-334, 1960) and Dharmadhikari and Jogdeo (Ann. Math. Stat. 40(4), 1506-1508, 1969) to martingales.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10440-007-9131-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2007-07, Vol.97 (1-3), p.151-162
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_miscellaneous_34779303
source SpringerLink Journals - AutoHoldings
subjects Constants
Independent variables
Inequalities
Inequality
Martingales
Mathematical models
Mathematics
Probability
Random variables
Studies
Theory
title On Probability and Moment Inequalities for Supermartingales and Martingales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Probability%20and%20Moment%20Inequalities%20for%C2%A0Supermartingales%20and%20Martingales&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Nagaev,%20S%20V&rft.date=2007-07-01&rft.volume=97&rft.issue=1-3&rft.spage=151&rft.epage=162&rft.pages=151-162&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-007-9131-0&rft_dat=%3Cproquest_cross%3E21345412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213897771&rft_id=info:pmid/&rfr_iscdi=true