Implementing first principles calculations of defect migration in a fuel performance code for UN simulations

Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nuclear Materials, 393(2):292-299 393(2):292-299, 2009-09, Vol.393 (2), p.292-299
Hauptverfasser: Kotomin, E.A., Mastrikov, Yu.A., Rashkeev, S.N., Van Uffelen, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 2
container_start_page 292
container_title Journal of Nuclear Materials, 393(2):292-299
container_volume 393
creator Kotomin, E.A.
Mastrikov, Yu.A.
Rashkeev, S.N.
Van Uffelen, P.
description Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.
doi_str_mv 10.1016/j.jnucmat.2009.06.016
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_34767189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509006771</els_id><sourcerecordid>34767189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMo2I7-BCEIuqvyJpXUYyUyjDow6MZZh3DrZkxTlbRJSvDfm7Jbt7MKOXz3dQ5jrwW0AkT__tgew4arLa0EmFro26o-YQcxDl2jRglP2QFAyqYTQj9nL3I-AoCeQB_YcrueFlopFB8euPMpF35KPqCvcuZoF9wWW3wMmUfHZ3KEha_-If0VuQ_ccrfRwk-UXEyrDUgc40y8_vj9V579-q_DS_bM2SXTq8t7xe4_3Xy__tLcfft8e_3xrkElx9L0HSJooZ3GyUqrFAx6INA0E8wSUYG0M45uGoTWitw4zhWcnRSDFgpFd8XenPvGXLzJ6AvhD4wh1N2NABBaDhV6d4ZOKf7cKBez-oy0LDZQ3LLp1NAPYpweBSWM1U7RVVCfQUwx50TOVCdXm37XmWZPyhzNJSmzJ2WgN1WtdW8vA2yuhrtUPfT5f7EUEygl90U-nDmq3v3ylPbTqPo9-7RfNkf_yKQ_sAmtUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20800013</pqid></control><display><type>article</type><title>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kotomin, E.A. ; Mastrikov, Yu.A. ; Rashkeev, S.N. ; Van Uffelen, P.</creator><creatorcontrib>Kotomin, E.A. ; Mastrikov, Yu.A. ; Rashkeev, S.N. ; Van Uffelen, P. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.06.016</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Environmental Molecular Sciences Laboratory ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels ; Preparation and processing of nuclear fuels</subject><ispartof>Journal of Nuclear Materials, 393(2):292-299, 2009-09, Vol.393 (2), p.292-299</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</citedby><cites>FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2009.06.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21904429$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1001527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotomin, E.A.</creatorcontrib><creatorcontrib>Mastrikov, Yu.A.</creatorcontrib><creatorcontrib>Rashkeev, S.N.</creatorcontrib><creatorcontrib>Van Uffelen, P.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</title><title>Journal of Nuclear Materials, 393(2):292-299</title><description>Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><subject>Preparation and processing of nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEUhYMo2I7-BCEIuqvyJpXUYyUyjDow6MZZh3DrZkxTlbRJSvDfm7Jbt7MKOXz3dQ5jrwW0AkT__tgew4arLa0EmFro26o-YQcxDl2jRglP2QFAyqYTQj9nL3I-AoCeQB_YcrueFlopFB8euPMpF35KPqCvcuZoF9wWW3wMmUfHZ3KEha_-If0VuQ_ccrfRwk-UXEyrDUgc40y8_vj9V579-q_DS_bM2SXTq8t7xe4_3Xy__tLcfft8e_3xrkElx9L0HSJooZ3GyUqrFAx6INA0E8wSUYG0M45uGoTWitw4zhWcnRSDFgpFd8XenPvGXLzJ6AvhD4wh1N2NABBaDhV6d4ZOKf7cKBez-oy0LDZQ3LLp1NAPYpweBSWM1U7RVVCfQUwx50TOVCdXm37XmWZPyhzNJSmzJ2WgN1WtdW8vA2yuhrtUPfT5f7EUEygl90U-nDmq3v3ylPbTqPo9-7RfNkf_yKQ_sAmtUQ</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Kotomin, E.A.</creator><creator>Mastrikov, Yu.A.</creator><creator>Rashkeev, S.N.</creator><creator>Van Uffelen, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090901</creationdate><title>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</title><author>Kotomin, E.A. ; Mastrikov, Yu.A. ; Rashkeev, S.N. ; Van Uffelen, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><topic>Preparation and processing of nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotomin, E.A.</creatorcontrib><creatorcontrib>Mastrikov, Yu.A.</creatorcontrib><creatorcontrib>Rashkeev, S.N.</creatorcontrib><creatorcontrib>Van Uffelen, P.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Nuclear Materials, 393(2):292-299</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotomin, E.A.</au><au>Mastrikov, Yu.A.</au><au>Rashkeev, S.N.</au><au>Van Uffelen, P.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</atitle><jtitle>Journal of Nuclear Materials, 393(2):292-299</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>393</volume><issue>2</issue><spage>292</spage><epage>299</epage><pages>292-299</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.06.016</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of Nuclear Materials, 393(2):292-299, 2009-09, Vol.393 (2), p.292-299
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_miscellaneous_34767189
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Environmental Molecular Sciences Laboratory
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
Preparation and processing of nuclear fuels
title Implementing first principles calculations of defect migration in a fuel performance code for UN simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20first%20principles%20calculations%20of%20defect%20migration%20in%20a%20fuel%20performance%20code%20for%20UN%20simulations&rft.jtitle=Journal%20of%20Nuclear%20Materials,%20393(2):292-299&rft.au=Kotomin,%20E.A.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2009-09-01&rft.volume=393&rft.issue=2&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.06.016&rft_dat=%3Cproquest_osti_%3E34767189%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20800013&rft_id=info:pmid/&rft_els_id=S0022311509006771&rfr_iscdi=true