Implementing first principles calculations of defect migration in a fuel performance code for UN simulations
Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migr...
Gespeichert in:
Veröffentlicht in: | Journal of Nuclear Materials, 393(2):292-299 393(2):292-299, 2009-09, Vol.393 (2), p.292-299 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 2 |
container_start_page | 292 |
container_title | Journal of Nuclear Materials, 393(2):292-299 |
container_volume | 393 |
creator | Kotomin, E.A. Mastrikov, Yu.A. Rashkeev, S.N. Van Uffelen, P. |
description | Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0
0
1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions. |
doi_str_mv | 10.1016/j.jnucmat.2009.06.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_34767189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509006771</els_id><sourcerecordid>34767189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMo2I7-BCEIuqvyJpXUYyUyjDow6MZZh3DrZkxTlbRJSvDfm7Jbt7MKOXz3dQ5jrwW0AkT__tgew4arLa0EmFro26o-YQcxDl2jRglP2QFAyqYTQj9nL3I-AoCeQB_YcrueFlopFB8euPMpF35KPqCvcuZoF9wWW3wMmUfHZ3KEha_-If0VuQ_ccrfRwk-UXEyrDUgc40y8_vj9V579-q_DS_bM2SXTq8t7xe4_3Xy__tLcfft8e_3xrkElx9L0HSJooZ3GyUqrFAx6INA0E8wSUYG0M45uGoTWitw4zhWcnRSDFgpFd8XenPvGXLzJ6AvhD4wh1N2NABBaDhV6d4ZOKf7cKBez-oy0LDZQ3LLp1NAPYpweBSWM1U7RVVCfQUwx50TOVCdXm37XmWZPyhzNJSmzJ2WgN1WtdW8vA2yuhrtUPfT5f7EUEygl90U-nDmq3v3ylPbTqPo9-7RfNkf_yKQ_sAmtUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20800013</pqid></control><display><type>article</type><title>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kotomin, E.A. ; Mastrikov, Yu.A. ; Rashkeev, S.N. ; Van Uffelen, P.</creator><creatorcontrib>Kotomin, E.A. ; Mastrikov, Yu.A. ; Rashkeev, S.N. ; Van Uffelen, P. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0
0
1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.06.016</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Environmental Molecular Sciences Laboratory ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels ; Preparation and processing of nuclear fuels</subject><ispartof>Journal of Nuclear Materials, 393(2):292-299, 2009-09, Vol.393 (2), p.292-299</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</citedby><cites>FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2009.06.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21904429$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1001527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotomin, E.A.</creatorcontrib><creatorcontrib>Mastrikov, Yu.A.</creatorcontrib><creatorcontrib>Rashkeev, S.N.</creatorcontrib><creatorcontrib>Van Uffelen, P.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</title><title>Journal of Nuclear Materials, 393(2):292-299</title><description>Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0
0
1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><subject>Preparation and processing of nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEUhYMo2I7-BCEIuqvyJpXUYyUyjDow6MZZh3DrZkxTlbRJSvDfm7Jbt7MKOXz3dQ5jrwW0AkT__tgew4arLa0EmFro26o-YQcxDl2jRglP2QFAyqYTQj9nL3I-AoCeQB_YcrueFlopFB8euPMpF35KPqCvcuZoF9wWW3wMmUfHZ3KEha_-If0VuQ_ccrfRwk-UXEyrDUgc40y8_vj9V579-q_DS_bM2SXTq8t7xe4_3Xy__tLcfft8e_3xrkElx9L0HSJooZ3GyUqrFAx6INA0E8wSUYG0M45uGoTWitw4zhWcnRSDFgpFd8XenPvGXLzJ6AvhD4wh1N2NABBaDhV6d4ZOKf7cKBez-oy0LDZQ3LLp1NAPYpweBSWM1U7RVVCfQUwx50TOVCdXm37XmWZPyhzNJSmzJ2WgN1WtdW8vA2yuhrtUPfT5f7EUEygl90U-nDmq3v3ylPbTqPo9-7RfNkf_yKQ_sAmtUQ</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Kotomin, E.A.</creator><creator>Mastrikov, Yu.A.</creator><creator>Rashkeev, S.N.</creator><creator>Van Uffelen, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090901</creationdate><title>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</title><author>Kotomin, E.A. ; Mastrikov, Yu.A. ; Rashkeev, S.N. ; Van Uffelen, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-63cc0515f5c9a2a440757e05ede0d2cc402adc8f971554ef88dc9adf217514c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><topic>Preparation and processing of nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotomin, E.A.</creatorcontrib><creatorcontrib>Mastrikov, Yu.A.</creatorcontrib><creatorcontrib>Rashkeev, S.N.</creatorcontrib><creatorcontrib>Van Uffelen, P.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Nuclear Materials, 393(2):292-299</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotomin, E.A.</au><au>Mastrikov, Yu.A.</au><au>Rashkeev, S.N.</au><au>Van Uffelen, P.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing first principles calculations of defect migration in a fuel performance code for UN simulations</atitle><jtitle>Journal of Nuclear Materials, 393(2):292-299</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>393</volume><issue>2</issue><spage>292</spage><epage>299</epage><pages>292-299</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0
0
1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the thermal creep model of the TRANSURANUS fuel performance code. Therefore a concrete example is provided of how first principles computations can contribute directly to improve the design tools of advanced nuclear fuels, e.g. the predictions reveal a limited effect of oxygen on the thermo-mechanical performance of nitride fuels under fast breeder reactor (FBR) normal operating conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.06.016</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of Nuclear Materials, 393(2):292-299, 2009-09, Vol.393 (2), p.292-299 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_miscellaneous_34767189 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Environmental Molecular Sciences Laboratory Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Nuclear fuels Preparation and processing of nuclear fuels |
title | Implementing first principles calculations of defect migration in a fuel performance code for UN simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20first%20principles%20calculations%20of%20defect%20migration%20in%20a%20fuel%20performance%20code%20for%20UN%20simulations&rft.jtitle=Journal%20of%20Nuclear%20Materials,%20393(2):292-299&rft.au=Kotomin,%20E.A.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2009-09-01&rft.volume=393&rft.issue=2&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.06.016&rft_dat=%3Cproquest_osti_%3E34767189%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20800013&rft_id=info:pmid/&rft_els_id=S0022311509006771&rfr_iscdi=true |