Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch

One approach for performing a finite-element simulation of interfacial fracture is to use a cohesive zone model. The cohesive zone model defines the interfacial traction–separation relation. Experimental determination of such a relation has been difficult. Most previous work has been confined to ten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2009-09, Vol.57 (16), p.4671-4686
Hauptverfasser: Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A., Reedy, E.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4686
container_issue 16
container_start_page 4671
container_title Acta materialia
container_volume 57
creator Zhou, X.W.
Moody, N.R.
Jones, R.E.
Zimmerman, J.A.
Reedy, E.D.
description One approach for performing a finite-element simulation of interfacial fracture is to use a cohesive zone model. The cohesive zone model defines the interfacial traction–separation relation. Experimental determination of such a relation has been difficult. Most previous work has been confined to tensile loading, and much less has been devoted to mixed-mode loading conditions. Even so, specific laws are often assumed rather than predicted. Our recent work has used molecular dynamics (MD) simulation methods to derive a general cohesive zone law for the fracture between two brittle materials under any mixed-mode loading conditions. Here we extend our method and use it to explore the effect of elastic constant mismatch between adjacent materials. In particular, we construct two bilayer structures where the cohesive energies and lattice constants of the constituent materials are kept the same, but the elastic constant mismatch of the two materials in one structure differs from that in the other. We then use MD simulations to study the fracture and to derive the cohesive zone laws for both structures. The effect of elastic constant mismatch on fracture will then be discussed.
doi_str_mv 10.1016/j.actamat.2009.06.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34764351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645409003723</els_id><sourcerecordid>34764351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-bcb63d291817891ba17f0386cd0df8b9b5a8f913d4601d0cf3192368ef4418923</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhiMEEqXwCEi-wC2pHTtOzAWhqkClIi5wtib2mHrltYvtlJan4JHxaldcOc1I8__zz3xd95rRgVEmL3YDmAp7qMNIqRqoHOjIn3RnbJl5P4qJP209n1QvxSSedy9K2VHKxlnQs-7PlxTQbAFybx8j7L0p_QoFLTHpFou_R_I7RSQBfhGXMlmzrzUg8bFidmA8BOJyy98yki1azGTvH5o9JLA-_mhrovXVp1jekSvn0NRCkiMYoFRvDuNSIdbmKu0Dc_uye-YgFHx1qufd949X3y4_9zdfP11ffrjpDZ9p7VezSm5HxRY2L4qtwGZH-SKNpdYtq1onWJxi3ApJmaXGcaZGLhd0QrCltefd2-Peu5x-bliqbhcYDAEipq1oLmYp-MSacDoKTU6lZHT6Lvs95EfNqD7w1zt94q8P_DWVuvFvvjenACgGQoMUjS__zCNTkipBm-79UYft23uPWRfjMRq0Pjda2ib_n6S_id-hXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34764351</pqid></control><display><type>article</type><title>Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, X.W. ; Moody, N.R. ; Jones, R.E. ; Zimmerman, J.A. ; Reedy, E.D.</creator><creatorcontrib>Zhou, X.W. ; Moody, N.R. ; Jones, R.E. ; Zimmerman, J.A. ; Reedy, E.D.</creatorcontrib><description>One approach for performing a finite-element simulation of interfacial fracture is to use a cohesive zone model. The cohesive zone model defines the interfacial traction–separation relation. Experimental determination of such a relation has been difficult. Most previous work has been confined to tensile loading, and much less has been devoted to mixed-mode loading conditions. Even so, specific laws are often assumed rather than predicted. Our recent work has used molecular dynamics (MD) simulation methods to derive a general cohesive zone law for the fracture between two brittle materials under any mixed-mode loading conditions. Here we extend our method and use it to explore the effect of elastic constant mismatch between adjacent materials. In particular, we construct two bilayer structures where the cohesive energies and lattice constants of the constituent materials are kept the same, but the elastic constant mismatch of the two materials in one structure differs from that in the other. We then use MD simulations to study the fracture and to derive the cohesive zone laws for both structures. The effect of elastic constant mismatch on fracture will then be discussed.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2009.06.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cohesive interface separation ; Cohesive surface model ; Exact sciences and technology ; Fracture ; Fractures ; Loading mode-mixity ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Molecular dynamics</subject><ispartof>Acta materialia, 2009-09, Vol.57 (16), p.4671-4686</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-bcb63d291817891ba17f0386cd0df8b9b5a8f913d4601d0cf3192368ef4418923</citedby><cites>FETCH-LOGICAL-c370t-bcb63d291817891ba17f0386cd0df8b9b5a8f913d4601d0cf3192368ef4418923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645409003723$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21960940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, X.W.</creatorcontrib><creatorcontrib>Moody, N.R.</creatorcontrib><creatorcontrib>Jones, R.E.</creatorcontrib><creatorcontrib>Zimmerman, J.A.</creatorcontrib><creatorcontrib>Reedy, E.D.</creatorcontrib><title>Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch</title><title>Acta materialia</title><description>One approach for performing a finite-element simulation of interfacial fracture is to use a cohesive zone model. The cohesive zone model defines the interfacial traction–separation relation. Experimental determination of such a relation has been difficult. Most previous work has been confined to tensile loading, and much less has been devoted to mixed-mode loading conditions. Even so, specific laws are often assumed rather than predicted. Our recent work has used molecular dynamics (MD) simulation methods to derive a general cohesive zone law for the fracture between two brittle materials under any mixed-mode loading conditions. Here we extend our method and use it to explore the effect of elastic constant mismatch between adjacent materials. In particular, we construct two bilayer structures where the cohesive energies and lattice constants of the constituent materials are kept the same, but the elastic constant mismatch of the two materials in one structure differs from that in the other. We then use MD simulations to study the fracture and to derive the cohesive zone laws for both structures. The effect of elastic constant mismatch on fracture will then be discussed.</description><subject>Applied sciences</subject><subject>Cohesive interface separation</subject><subject>Cohesive surface model</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fractures</subject><subject>Loading mode-mixity</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Molecular dynamics</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhiMEEqXwCEi-wC2pHTtOzAWhqkClIi5wtib2mHrltYvtlJan4JHxaldcOc1I8__zz3xd95rRgVEmL3YDmAp7qMNIqRqoHOjIn3RnbJl5P4qJP209n1QvxSSedy9K2VHKxlnQs-7PlxTQbAFybx8j7L0p_QoFLTHpFou_R_I7RSQBfhGXMlmzrzUg8bFidmA8BOJyy98yki1azGTvH5o9JLA-_mhrovXVp1jekSvn0NRCkiMYoFRvDuNSIdbmKu0Dc_uye-YgFHx1qufd949X3y4_9zdfP11ffrjpDZ9p7VezSm5HxRY2L4qtwGZH-SKNpdYtq1onWJxi3ApJmaXGcaZGLhd0QrCltefd2-Peu5x-bliqbhcYDAEipq1oLmYp-MSacDoKTU6lZHT6Lvs95EfNqD7w1zt94q8P_DWVuvFvvjenACgGQoMUjS__zCNTkipBm-79UYft23uPWRfjMRq0Pjda2ib_n6S_id-hXA</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Zhou, X.W.</creator><creator>Moody, N.R.</creator><creator>Jones, R.E.</creator><creator>Zimmerman, J.A.</creator><creator>Reedy, E.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090901</creationdate><title>Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch</title><author>Zhou, X.W. ; Moody, N.R. ; Jones, R.E. ; Zimmerman, J.A. ; Reedy, E.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-bcb63d291817891ba17f0386cd0df8b9b5a8f913d4601d0cf3192368ef4418923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cohesive interface separation</topic><topic>Cohesive surface model</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fractures</topic><topic>Loading mode-mixity</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, X.W.</creatorcontrib><creatorcontrib>Moody, N.R.</creatorcontrib><creatorcontrib>Jones, R.E.</creatorcontrib><creatorcontrib>Zimmerman, J.A.</creatorcontrib><creatorcontrib>Reedy, E.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, X.W.</au><au>Moody, N.R.</au><au>Jones, R.E.</au><au>Zimmerman, J.A.</au><au>Reedy, E.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch</atitle><jtitle>Acta materialia</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>57</volume><issue>16</issue><spage>4671</spage><epage>4686</epage><pages>4671-4686</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>One approach for performing a finite-element simulation of interfacial fracture is to use a cohesive zone model. The cohesive zone model defines the interfacial traction–separation relation. Experimental determination of such a relation has been difficult. Most previous work has been confined to tensile loading, and much less has been devoted to mixed-mode loading conditions. Even so, specific laws are often assumed rather than predicted. Our recent work has used molecular dynamics (MD) simulation methods to derive a general cohesive zone law for the fracture between two brittle materials under any mixed-mode loading conditions. Here we extend our method and use it to explore the effect of elastic constant mismatch between adjacent materials. In particular, we construct two bilayer structures where the cohesive energies and lattice constants of the constituent materials are kept the same, but the elastic constant mismatch of the two materials in one structure differs from that in the other. We then use MD simulations to study the fracture and to derive the cohesive zone laws for both structures. The effect of elastic constant mismatch on fracture will then be discussed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2009.06.023</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2009-09, Vol.57 (16), p.4671-4686
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_34764351
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cohesive interface separation
Cohesive surface model
Exact sciences and technology
Fracture
Fractures
Loading mode-mixity
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Molecular dynamics
title Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-dynamics-based%20cohesive%20zone%20law%20for%20brittle%20interfacial%20fracture%20under%20mixed%20loading%20conditions:%20Effects%20of%20elastic%20constant%20mismatch&rft.jtitle=Acta%20materialia&rft.au=Zhou,%20X.W.&rft.date=2009-09-01&rft.volume=57&rft.issue=16&rft.spage=4671&rft.epage=4686&rft.pages=4671-4686&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2009.06.023&rft_dat=%3Cproquest_cross%3E34764351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34764351&rft_id=info:pmid/&rft_els_id=S1359645409003723&rfr_iscdi=true