Method of Kronecker product to advanced type Riccati differential systems with strongly coupled quadratic terms

In this paper we consider a Riccati differential equation system of advanced type, strongly coupled in its quadratic terms. We reformulate it to a vector equation using the Kronecker product so that the successive approximation method is applicable. Finally, we study an iterative scheme for the prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2009-10, Vol.58 (8), p.1615-1622
Hauptverfasser: Bahuguna, D., Ujlayan, A., Pandey, Dwijendra N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 8
container_start_page 1615
container_title Computers & mathematics with applications (1987)
container_volume 58
creator Bahuguna, D.
Ujlayan, A.
Pandey, Dwijendra N.
description In this paper we consider a Riccati differential equation system of advanced type, strongly coupled in its quadratic terms. We reformulate it to a vector equation using the Kronecker product so that the successive approximation method is applicable. Finally, we study an iterative scheme for the problem and obtain the error bounds for the given scheme.
doi_str_mv 10.1016/j.camwa.2009.06.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34759500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122109004507</els_id><sourcerecordid>34759500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e6a247e32c526853cc0b2b657ba5f7827fa60d55d86773e83b5944d9035841a83</originalsourceid><addsrcrecordid>eNp9kL1u2zAYRYkiBer8PEEWTt2kfiLFHw0dCqNJi6YoEDQzQZGfEjqSaZNUAr995Dpzp7vcc4F7CLluoG6gkV82tbPTq60ZQFeDrKFlH8iq0YpXSkp9RlagO101jDWfyHnOGwBoOYMVib-xPEVP40B_pbhF94yJ7lL0syu0RGr9i9069LQcdkjvg3O2BOrDMGDCbQl2pPmQC06ZvobyRHNZVh7HA3Vx3o0Lt5-tTwvjaME05UvycbBjxqv3vCAPN9__rn9Ud39uf66_3VWOs65UKC1rFXLmBJNacOegZ70UqrdiUJqpwUrwQngtleKoeS-6tvUdcKHbxmp-QT6fdpcv-xlzMVPIDsfRbjHO2fBWiU4ALEV-KroUc044mF0Kk00H04A5yjUb80-uOco1IM0id6G-nihcPrwETCa7gEdRIaErxsfwX_4NapeFgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34759500</pqid></control><display><type>article</type><title>Method of Kronecker product to advanced type Riccati differential systems with strongly coupled quadratic terms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bahuguna, D. ; Ujlayan, A. ; Pandey, Dwijendra N.</creator><creatorcontrib>Bahuguna, D. ; Ujlayan, A. ; Pandey, Dwijendra N.</creatorcontrib><description>In this paper we consider a Riccati differential equation system of advanced type, strongly coupled in its quadratic terms. We reformulate it to a vector equation using the Kronecker product so that the successive approximation method is applicable. Finally, we study an iterative scheme for the problem and obtain the error bounds for the given scheme.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2009.06.042</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Control theory ; Coupled quadratic term ; Kronecker product ; Riccati matrix differential system ; Terminal value problem</subject><ispartof>Computers &amp; mathematics with applications (1987), 2009-10, Vol.58 (8), p.1615-1622</ispartof><rights>2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-e6a247e32c526853cc0b2b657ba5f7827fa60d55d86773e83b5944d9035841a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2009.06.042$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Bahuguna, D.</creatorcontrib><creatorcontrib>Ujlayan, A.</creatorcontrib><creatorcontrib>Pandey, Dwijendra N.</creatorcontrib><title>Method of Kronecker product to advanced type Riccati differential systems with strongly coupled quadratic terms</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper we consider a Riccati differential equation system of advanced type, strongly coupled in its quadratic terms. We reformulate it to a vector equation using the Kronecker product so that the successive approximation method is applicable. Finally, we study an iterative scheme for the problem and obtain the error bounds for the given scheme.</description><subject>Control theory</subject><subject>Coupled quadratic term</subject><subject>Kronecker product</subject><subject>Riccati matrix differential system</subject><subject>Terminal value problem</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kL1u2zAYRYkiBer8PEEWTt2kfiLFHw0dCqNJi6YoEDQzQZGfEjqSaZNUAr995Dpzp7vcc4F7CLluoG6gkV82tbPTq60ZQFeDrKFlH8iq0YpXSkp9RlagO101jDWfyHnOGwBoOYMVib-xPEVP40B_pbhF94yJ7lL0syu0RGr9i9069LQcdkjvg3O2BOrDMGDCbQl2pPmQC06ZvobyRHNZVh7HA3Vx3o0Lt5-tTwvjaME05UvycbBjxqv3vCAPN9__rn9Ud39uf66_3VWOs65UKC1rFXLmBJNacOegZ70UqrdiUJqpwUrwQngtleKoeS-6tvUdcKHbxmp-QT6fdpcv-xlzMVPIDsfRbjHO2fBWiU4ALEV-KroUc044mF0Kk00H04A5yjUb80-uOco1IM0id6G-nihcPrwETCa7gEdRIaErxsfwX_4NapeFgw</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Bahuguna, D.</creator><creator>Ujlayan, A.</creator><creator>Pandey, Dwijendra N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Method of Kronecker product to advanced type Riccati differential systems with strongly coupled quadratic terms</title><author>Bahuguna, D. ; Ujlayan, A. ; Pandey, Dwijendra N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e6a247e32c526853cc0b2b657ba5f7827fa60d55d86773e83b5944d9035841a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Control theory</topic><topic>Coupled quadratic term</topic><topic>Kronecker product</topic><topic>Riccati matrix differential system</topic><topic>Terminal value problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahuguna, D.</creatorcontrib><creatorcontrib>Ujlayan, A.</creatorcontrib><creatorcontrib>Pandey, Dwijendra N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahuguna, D.</au><au>Ujlayan, A.</au><au>Pandey, Dwijendra N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of Kronecker product to advanced type Riccati differential systems with strongly coupled quadratic terms</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>58</volume><issue>8</issue><spage>1615</spage><epage>1622</epage><pages>1615-1622</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper we consider a Riccati differential equation system of advanced type, strongly coupled in its quadratic terms. We reformulate it to a vector equation using the Kronecker product so that the successive approximation method is applicable. Finally, we study an iterative scheme for the problem and obtain the error bounds for the given scheme.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2009.06.042</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2009-10, Vol.58 (8), p.1615-1622
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_34759500
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Control theory
Coupled quadratic term
Kronecker product
Riccati matrix differential system
Terminal value problem
title Method of Kronecker product to advanced type Riccati differential systems with strongly coupled quadratic terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20Kronecker%20product%20to%20advanced%20type%20Riccati%20differential%20systems%20with%20strongly%20coupled%20quadratic%20terms&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Bahuguna,%20D.&rft.date=2009-10-01&rft.volume=58&rft.issue=8&rft.spage=1615&rft.epage=1622&rft.pages=1615-1622&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2009.06.042&rft_dat=%3Cproquest_cross%3E34759500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34759500&rft_id=info:pmid/&rft_els_id=S0898122109004507&rfr_iscdi=true