Modelling gas purification systems employing molecular sieve silica membranes

In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO 2 and H 2, both as single gases and as a binary gas mixture. The model is based on con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2009-05, Vol.66 (3), p.559-564
Hauptverfasser: Abdel-jawad, M.M., Macrossan, M.N., Diniz da Costa, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 3
container_start_page 559
container_title Separation and purification technology
container_volume 66
creator Abdel-jawad, M.M.
Macrossan, M.N.
Diniz da Costa, J.C.
description In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO 2 and H 2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.
doi_str_mv 10.1016/j.seppur.2009.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34758452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586609000343</els_id><sourcerecordid>20749364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4souK5-Aw-96K01rz5yEWTxBbt40XPIJtMlS19m2oX99qZ08agwJDn85j-TXxTdUpJSQvOHfYrQ96NPGSEyJTSUOIsWtCx4wgspzsOblzzJyjy_jK4Q94TQgpZsEW02nYW6du0u3mmMQ4irnNGD69oYjzhAgzE0fd0dJ6TpajBjrX2MDg4QzjrAcQPN1usW8Dq6qHSNcHO6l9HXy_Pn6i1Zf7y-r57WieGyHBJuSEFoKSppdb6tmLWWyowYJiwwYzWThlNb8twKYsiWhb056ExwQU0FNOPL6H7O7X33PQIOqnFowj_CEt2IiosiK0XG_gUZKYTkuQigmEHjO0QPleq9a7Q_KkrUJFnt1SxZTZIVoaGmtrtTvkaj6ypYMA5_exkVmaSiCNzjzEGwcnDgFRoHrQHrPJhB2c79PegHHryVvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20749364</pqid></control><display><type>article</type><title>Modelling gas purification systems employing molecular sieve silica membranes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abdel-jawad, M.M. ; Macrossan, M.N. ; Diniz da Costa, J.C.</creator><creatorcontrib>Abdel-jawad, M.M. ; Macrossan, M.N. ; Diniz da Costa, J.C.</creatorcontrib><description>In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO 2 and H 2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.</description><identifier>ISSN: 1383-5866</identifier><identifier>EISSN: 1873-3794</identifier><identifier>DOI: 10.1016/j.seppur.2009.01.014</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Binary gas mixture ; Chemical engineering ; Exact sciences and technology ; Membrane separation (reverse osmosis, dialysis...) ; Molecular sieve silica membrane ; Separation transient state modelling</subject><ispartof>Separation and purification technology, 2009-05, Vol.66 (3), p.559-564</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</citedby><cites>FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.seppur.2009.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21459147$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdel-jawad, M.M.</creatorcontrib><creatorcontrib>Macrossan, M.N.</creatorcontrib><creatorcontrib>Diniz da Costa, J.C.</creatorcontrib><title>Modelling gas purification systems employing molecular sieve silica membranes</title><title>Separation and purification technology</title><description>In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO 2 and H 2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.</description><subject>Applied sciences</subject><subject>Binary gas mixture</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Molecular sieve silica membrane</subject><subject>Separation transient state modelling</subject><issn>1383-5866</issn><issn>1873-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4souK5-Aw-96K01rz5yEWTxBbt40XPIJtMlS19m2oX99qZ08agwJDn85j-TXxTdUpJSQvOHfYrQ96NPGSEyJTSUOIsWtCx4wgspzsOblzzJyjy_jK4Q94TQgpZsEW02nYW6du0u3mmMQ4irnNGD69oYjzhAgzE0fd0dJ6TpajBjrX2MDg4QzjrAcQPN1usW8Dq6qHSNcHO6l9HXy_Pn6i1Zf7y-r57WieGyHBJuSEFoKSppdb6tmLWWyowYJiwwYzWThlNb8twKYsiWhb056ExwQU0FNOPL6H7O7X33PQIOqnFowj_CEt2IiosiK0XG_gUZKYTkuQigmEHjO0QPleq9a7Q_KkrUJFnt1SxZTZIVoaGmtrtTvkaj6ypYMA5_exkVmaSiCNzjzEGwcnDgFRoHrQHrPJhB2c79PegHHryVvQ</recordid><startdate>20090507</startdate><enddate>20090507</enddate><creator>Abdel-jawad, M.M.</creator><creator>Macrossan, M.N.</creator><creator>Diniz da Costa, J.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20090507</creationdate><title>Modelling gas purification systems employing molecular sieve silica membranes</title><author>Abdel-jawad, M.M. ; Macrossan, M.N. ; Diniz da Costa, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Binary gas mixture</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Molecular sieve silica membrane</topic><topic>Separation transient state modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-jawad, M.M.</creatorcontrib><creatorcontrib>Macrossan, M.N.</creatorcontrib><creatorcontrib>Diniz da Costa, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-jawad, M.M.</au><au>Macrossan, M.N.</au><au>Diniz da Costa, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling gas purification systems employing molecular sieve silica membranes</atitle><jtitle>Separation and purification technology</jtitle><date>2009-05-07</date><risdate>2009</risdate><volume>66</volume><issue>3</issue><spage>559</spage><epage>564</epage><pages>559-564</pages><issn>1383-5866</issn><eissn>1873-3794</eissn><abstract>In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO 2 and H 2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2009.01.014</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-5866
ispartof Separation and purification technology, 2009-05, Vol.66 (3), p.559-564
issn 1383-5866
1873-3794
language eng
recordid cdi_proquest_miscellaneous_34758452
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Binary gas mixture
Chemical engineering
Exact sciences and technology
Membrane separation (reverse osmosis, dialysis...)
Molecular sieve silica membrane
Separation transient state modelling
title Modelling gas purification systems employing molecular sieve silica membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20gas%20purification%20systems%20employing%20molecular%20sieve%20silica%20membranes&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Abdel-jawad,%20M.M.&rft.date=2009-05-07&rft.volume=66&rft.issue=3&rft.spage=559&rft.epage=564&rft.pages=559-564&rft.issn=1383-5866&rft.eissn=1873-3794&rft_id=info:doi/10.1016/j.seppur.2009.01.014&rft_dat=%3Cproquest_cross%3E20749364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20749364&rft_id=info:pmid/&rft_els_id=S1383586609000343&rfr_iscdi=true