Modelling gas purification systems employing molecular sieve silica membranes
In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO 2 and H 2, both as single gases and as a binary gas mixture. The model is based on con...
Gespeichert in:
Veröffentlicht in: | Separation and purification technology 2009-05, Vol.66 (3), p.559-564 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | 3 |
container_start_page | 559 |
container_title | Separation and purification technology |
container_volume | 66 |
creator | Abdel-jawad, M.M. Macrossan, M.N. Diniz da Costa, J.C. |
description | In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO
2 and H
2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations. |
doi_str_mv | 10.1016/j.seppur.2009.01.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34758452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586609000343</els_id><sourcerecordid>20749364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4souK5-Aw-96K01rz5yEWTxBbt40XPIJtMlS19m2oX99qZ08agwJDn85j-TXxTdUpJSQvOHfYrQ96NPGSEyJTSUOIsWtCx4wgspzsOblzzJyjy_jK4Q94TQgpZsEW02nYW6du0u3mmMQ4irnNGD69oYjzhAgzE0fd0dJ6TpajBjrX2MDg4QzjrAcQPN1usW8Dq6qHSNcHO6l9HXy_Pn6i1Zf7y-r57WieGyHBJuSEFoKSppdb6tmLWWyowYJiwwYzWThlNb8twKYsiWhb056ExwQU0FNOPL6H7O7X33PQIOqnFowj_CEt2IiosiK0XG_gUZKYTkuQigmEHjO0QPleq9a7Q_KkrUJFnt1SxZTZIVoaGmtrtTvkaj6ypYMA5_exkVmaSiCNzjzEGwcnDgFRoHrQHrPJhB2c79PegHHryVvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20749364</pqid></control><display><type>article</type><title>Modelling gas purification systems employing molecular sieve silica membranes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abdel-jawad, M.M. ; Macrossan, M.N. ; Diniz da Costa, J.C.</creator><creatorcontrib>Abdel-jawad, M.M. ; Macrossan, M.N. ; Diniz da Costa, J.C.</creatorcontrib><description>In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO
2 and H
2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.</description><identifier>ISSN: 1383-5866</identifier><identifier>EISSN: 1873-3794</identifier><identifier>DOI: 10.1016/j.seppur.2009.01.014</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Binary gas mixture ; Chemical engineering ; Exact sciences and technology ; Membrane separation (reverse osmosis, dialysis...) ; Molecular sieve silica membrane ; Separation transient state modelling</subject><ispartof>Separation and purification technology, 2009-05, Vol.66 (3), p.559-564</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</citedby><cites>FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.seppur.2009.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21459147$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdel-jawad, M.M.</creatorcontrib><creatorcontrib>Macrossan, M.N.</creatorcontrib><creatorcontrib>Diniz da Costa, J.C.</creatorcontrib><title>Modelling gas purification systems employing molecular sieve silica membranes</title><title>Separation and purification technology</title><description>In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO
2 and H
2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.</description><subject>Applied sciences</subject><subject>Binary gas mixture</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Molecular sieve silica membrane</subject><subject>Separation transient state modelling</subject><issn>1383-5866</issn><issn>1873-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4souK5-Aw-96K01rz5yEWTxBbt40XPIJtMlS19m2oX99qZ08agwJDn85j-TXxTdUpJSQvOHfYrQ96NPGSEyJTSUOIsWtCx4wgspzsOblzzJyjy_jK4Q94TQgpZsEW02nYW6du0u3mmMQ4irnNGD69oYjzhAgzE0fd0dJ6TpajBjrX2MDg4QzjrAcQPN1usW8Dq6qHSNcHO6l9HXy_Pn6i1Zf7y-r57WieGyHBJuSEFoKSppdb6tmLWWyowYJiwwYzWThlNb8twKYsiWhb056ExwQU0FNOPL6H7O7X33PQIOqnFowj_CEt2IiosiK0XG_gUZKYTkuQigmEHjO0QPleq9a7Q_KkrUJFnt1SxZTZIVoaGmtrtTvkaj6ypYMA5_exkVmaSiCNzjzEGwcnDgFRoHrQHrPJhB2c79PegHHryVvQ</recordid><startdate>20090507</startdate><enddate>20090507</enddate><creator>Abdel-jawad, M.M.</creator><creator>Macrossan, M.N.</creator><creator>Diniz da Costa, J.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20090507</creationdate><title>Modelling gas purification systems employing molecular sieve silica membranes</title><author>Abdel-jawad, M.M. ; Macrossan, M.N. ; Diniz da Costa, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-3c070184f9da6bf2ddd1950c24de2cda29c31d836d40c0b25863ea54341cfe153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Binary gas mixture</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Molecular sieve silica membrane</topic><topic>Separation transient state modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-jawad, M.M.</creatorcontrib><creatorcontrib>Macrossan, M.N.</creatorcontrib><creatorcontrib>Diniz da Costa, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-jawad, M.M.</au><au>Macrossan, M.N.</au><au>Diniz da Costa, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling gas purification systems employing molecular sieve silica membranes</atitle><jtitle>Separation and purification technology</jtitle><date>2009-05-07</date><risdate>2009</risdate><volume>66</volume><issue>3</issue><spage>559</spage><epage>564</epage><pages>559-564</pages><issn>1383-5866</issn><eissn>1873-3794</eissn><abstract>In this work, we simulate the transient behaviour of gas purification systems employing silica derived membranes and formulate a model that is capable of predicting this transient behaviour in the presence of a CO
2 and H
2, both as single gases and as a binary gas mixture. The model is based on continuity and assumes that the membrane properties do not change between single gas and mixed gas cases. Based on these properties, the complete characterization of transient membrane performance is obtained thereby providing an explanation based upon driving forces for very significant differences between single and mixed gas measurements. The simulated results are validated with independent mixed gas experiments and are then extended to analyse the difference in performance for a gas separation system with mixed gas feed using membranes with at least one order of magnitude difference in selectivity based on single gas permeations. The model also allows simulation for membranes complying with temperature dependency mechanism. Our results show that the increase in performance of the system for mixed gas feed is not commensurate with the increase in the selectivity based on single gas permeations.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2009.01.014</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-5866 |
ispartof | Separation and purification technology, 2009-05, Vol.66 (3), p.559-564 |
issn | 1383-5866 1873-3794 |
language | eng |
recordid | cdi_proquest_miscellaneous_34758452 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Binary gas mixture Chemical engineering Exact sciences and technology Membrane separation (reverse osmosis, dialysis...) Molecular sieve silica membrane Separation transient state modelling |
title | Modelling gas purification systems employing molecular sieve silica membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20gas%20purification%20systems%20employing%20molecular%20sieve%20silica%20membranes&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Abdel-jawad,%20M.M.&rft.date=2009-05-07&rft.volume=66&rft.issue=3&rft.spage=559&rft.epage=564&rft.pages=559-564&rft.issn=1383-5866&rft.eissn=1873-3794&rft_id=info:doi/10.1016/j.seppur.2009.01.014&rft_dat=%3Cproquest_cross%3E20749364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20749364&rft_id=info:pmid/&rft_els_id=S1383586609000343&rfr_iscdi=true |