Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors
A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical s...
Gespeichert in:
Veröffentlicht in: | Physica Status Solidi (b) 2008-10, Vol.245 (10), p.2343-2346 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2346 |
---|---|
container_issue | 10 |
container_start_page | 2343 |
container_title | Physica Status Solidi (b) |
container_volume | 245 |
creator | Heszler, Peter Gingl, Zoltan Mingesz, Robert Csengeri, Attila Haspel, Henrik Kukovecz, Akos Kónya, Zoltan Kiricsi, Imre Ionescu, Radu Mäklin, Jani Mustonen, Tero Tóth, Géza Halonen, Niina Kordás, Krisztián Vähäkangas, Jouko Moilanen, Hannu |
description | A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200879581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34755960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34755960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMKVcy5wS_Ejqe0jlDcIEOVxtDaODYGQFG8i4O9xKaq4cRppd2Z2dgjZZnTEKOV7M8RixClVUueKrZAByzlLhc7ZKhlQIWnKtOTrZAPxhVIqmWADcnEYKt8lzntnu6T1ia972_XQVW2TuOYZGuvK5AkwQddg1TwlcW4hFBEaaNquL9zPqg24SdY81Oi2fnFI7o-P7ian6eX1ydlk_zK1QqmYiHuvPFcaVDbmRWm1AutVxvWYRyydskWmROYkp8CphwJKLkrQuWallqUYkt2F7yy0773DzrxVaF1dQ-PaHo3IZJ7rMY3E0YJoQ4sYnDezUL1B-DKMmnlnZt6ZWXYWBTu_zoAWah_i-xUuVZyqGFKryNML3kdVu69_XM3NdHrw90a60FbYuc-lFsKrGUshc_N4dWJuxcPF5Dybmqn4Bq7ejfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34755960</pqid></control><display><type>article</type><title>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heszler, Peter ; Gingl, Zoltan ; Mingesz, Robert ; Csengeri, Attila ; Haspel, Henrik ; Kukovecz, Akos ; Kónya, Zoltan ; Kiricsi, Imre ; Ionescu, Radu ; Mäklin, Jani ; Mustonen, Tero ; Tóth, Géza ; Halonen, Niina ; Kordás, Krisztián ; Vähäkangas, Jouko ; Moilanen, Hannu</creator><creatorcontrib>Heszler, Peter ; Gingl, Zoltan ; Mingesz, Robert ; Csengeri, Attila ; Haspel, Henrik ; Kukovecz, Akos ; Kónya, Zoltan ; Kiricsi, Imre ; Ionescu, Radu ; Mäklin, Jani ; Mustonen, Tero ; Tóth, Géza ; Halonen, Niina ; Kordás, Krisztián ; Vähäkangas, Jouko ; Moilanen, Hannu</creatorcontrib><description>A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200879581</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>07.07.Df ; 73.50.Td ; 73.63.Fg ; 81.07.De ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Physica Status Solidi (b), 2008-10, Vol.245 (10), p.2343-2346</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</citedby><cites>FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200879581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200879581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20829698$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heszler, Peter</creatorcontrib><creatorcontrib>Gingl, Zoltan</creatorcontrib><creatorcontrib>Mingesz, Robert</creatorcontrib><creatorcontrib>Csengeri, Attila</creatorcontrib><creatorcontrib>Haspel, Henrik</creatorcontrib><creatorcontrib>Kukovecz, Akos</creatorcontrib><creatorcontrib>Kónya, Zoltan</creatorcontrib><creatorcontrib>Kiricsi, Imre</creatorcontrib><creatorcontrib>Ionescu, Radu</creatorcontrib><creatorcontrib>Mäklin, Jani</creatorcontrib><creatorcontrib>Mustonen, Tero</creatorcontrib><creatorcontrib>Tóth, Géza</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Kordás, Krisztián</creatorcontrib><creatorcontrib>Vähäkangas, Jouko</creatorcontrib><creatorcontrib>Moilanen, Hannu</creatorcontrib><title>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</title><title>Physica Status Solidi (b)</title><addtitle>Phys. Status Solidi B</addtitle><description>A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>07.07.Df</subject><subject>73.50.Td</subject><subject>73.63.Fg</subject><subject>81.07.De</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMKVcy5wS_Ejqe0jlDcIEOVxtDaODYGQFG8i4O9xKaq4cRppd2Z2dgjZZnTEKOV7M8RixClVUueKrZAByzlLhc7ZKhlQIWnKtOTrZAPxhVIqmWADcnEYKt8lzntnu6T1ia972_XQVW2TuOYZGuvK5AkwQddg1TwlcW4hFBEaaNquL9zPqg24SdY81Oi2fnFI7o-P7ian6eX1ydlk_zK1QqmYiHuvPFcaVDbmRWm1AutVxvWYRyydskWmROYkp8CphwJKLkrQuWallqUYkt2F7yy0773DzrxVaF1dQ-PaHo3IZJ7rMY3E0YJoQ4sYnDezUL1B-DKMmnlnZt6ZWXYWBTu_zoAWah_i-xUuVZyqGFKryNML3kdVu69_XM3NdHrw90a60FbYuc-lFsKrGUshc_N4dWJuxcPF5Dybmqn4Bq7ejfo</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Heszler, Peter</creator><creator>Gingl, Zoltan</creator><creator>Mingesz, Robert</creator><creator>Csengeri, Attila</creator><creator>Haspel, Henrik</creator><creator>Kukovecz, Akos</creator><creator>Kónya, Zoltan</creator><creator>Kiricsi, Imre</creator><creator>Ionescu, Radu</creator><creator>Mäklin, Jani</creator><creator>Mustonen, Tero</creator><creator>Tóth, Géza</creator><creator>Halonen, Niina</creator><creator>Kordás, Krisztián</creator><creator>Vähäkangas, Jouko</creator><creator>Moilanen, Hannu</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200810</creationdate><title>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</title><author>Heszler, Peter ; Gingl, Zoltan ; Mingesz, Robert ; Csengeri, Attila ; Haspel, Henrik ; Kukovecz, Akos ; Kónya, Zoltan ; Kiricsi, Imre ; Ionescu, Radu ; Mäklin, Jani ; Mustonen, Tero ; Tóth, Géza ; Halonen, Niina ; Kordás, Krisztián ; Vähäkangas, Jouko ; Moilanen, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>07.07.Df</topic><topic>73.50.Td</topic><topic>73.63.Fg</topic><topic>81.07.De</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heszler, Peter</creatorcontrib><creatorcontrib>Gingl, Zoltan</creatorcontrib><creatorcontrib>Mingesz, Robert</creatorcontrib><creatorcontrib>Csengeri, Attila</creatorcontrib><creatorcontrib>Haspel, Henrik</creatorcontrib><creatorcontrib>Kukovecz, Akos</creatorcontrib><creatorcontrib>Kónya, Zoltan</creatorcontrib><creatorcontrib>Kiricsi, Imre</creatorcontrib><creatorcontrib>Ionescu, Radu</creatorcontrib><creatorcontrib>Mäklin, Jani</creatorcontrib><creatorcontrib>Mustonen, Tero</creatorcontrib><creatorcontrib>Tóth, Géza</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Kordás, Krisztián</creatorcontrib><creatorcontrib>Vähäkangas, Jouko</creatorcontrib><creatorcontrib>Moilanen, Hannu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heszler, Peter</au><au>Gingl, Zoltan</au><au>Mingesz, Robert</au><au>Csengeri, Attila</au><au>Haspel, Henrik</au><au>Kukovecz, Akos</au><au>Kónya, Zoltan</au><au>Kiricsi, Imre</au><au>Ionescu, Radu</au><au>Mäklin, Jani</au><au>Mustonen, Tero</au><au>Tóth, Géza</au><au>Halonen, Niina</au><au>Kordás, Krisztián</au><au>Vähäkangas, Jouko</au><au>Moilanen, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2008-10</date><risdate>2008</risdate><volume>245</volume><issue>10</issue><spage>2343</spage><epage>2346</epage><pages>2343-2346</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200879581</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2008-10, Vol.245 (10), p.2343-2346 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_34755960 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 07.07.Df 73.50.Td 73.63.Fg 81.07.De Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Physics Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing |
title | Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift%20effect%20of%20fluctuation%20enhanced%20gas%20sensing%20on%20carbon%20nanotube%20sensors&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Heszler,%20Peter&rft.date=2008-10&rft.volume=245&rft.issue=10&rft.spage=2343&rft.epage=2346&rft.pages=2343-2346&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200879581&rft_dat=%3Cproquest_cross%3E34755960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34755960&rft_id=info:pmid/&rfr_iscdi=true |