Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors

A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2008-10, Vol.245 (10), p.2343-2346
Hauptverfasser: Heszler, Peter, Gingl, Zoltan, Mingesz, Robert, Csengeri, Attila, Haspel, Henrik, Kukovecz, Akos, Kónya, Zoltan, Kiricsi, Imre, Ionescu, Radu, Mäklin, Jani, Mustonen, Tero, Tóth, Géza, Halonen, Niina, Kordás, Krisztián, Vähäkangas, Jouko, Moilanen, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2346
container_issue 10
container_start_page 2343
container_title Physica Status Solidi (b)
container_volume 245
creator Heszler, Peter
Gingl, Zoltan
Mingesz, Robert
Csengeri, Attila
Haspel, Henrik
Kukovecz, Akos
Kónya, Zoltan
Kiricsi, Imre
Ionescu, Radu
Mäklin, Jani
Mustonen, Tero
Tóth, Géza
Halonen, Niina
Kordás, Krisztián
Vähäkangas, Jouko
Moilanen, Hannu
description A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200879581
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34755960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34755960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMKVcy5wS_Ejqe0jlDcIEOVxtDaODYGQFG8i4O9xKaq4cRppd2Z2dgjZZnTEKOV7M8RixClVUueKrZAByzlLhc7ZKhlQIWnKtOTrZAPxhVIqmWADcnEYKt8lzntnu6T1ia972_XQVW2TuOYZGuvK5AkwQddg1TwlcW4hFBEaaNquL9zPqg24SdY81Oi2fnFI7o-P7ian6eX1ydlk_zK1QqmYiHuvPFcaVDbmRWm1AutVxvWYRyydskWmROYkp8CphwJKLkrQuWallqUYkt2F7yy0773DzrxVaF1dQ-PaHo3IZJ7rMY3E0YJoQ4sYnDezUL1B-DKMmnlnZt6ZWXYWBTu_zoAWah_i-xUuVZyqGFKryNML3kdVu69_XM3NdHrw90a60FbYuc-lFsKrGUshc_N4dWJuxcPF5Dybmqn4Bq7ejfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34755960</pqid></control><display><type>article</type><title>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heszler, Peter ; Gingl, Zoltan ; Mingesz, Robert ; Csengeri, Attila ; Haspel, Henrik ; Kukovecz, Akos ; Kónya, Zoltan ; Kiricsi, Imre ; Ionescu, Radu ; Mäklin, Jani ; Mustonen, Tero ; Tóth, Géza ; Halonen, Niina ; Kordás, Krisztián ; Vähäkangas, Jouko ; Moilanen, Hannu</creator><creatorcontrib>Heszler, Peter ; Gingl, Zoltan ; Mingesz, Robert ; Csengeri, Attila ; Haspel, Henrik ; Kukovecz, Akos ; Kónya, Zoltan ; Kiricsi, Imre ; Ionescu, Radu ; Mäklin, Jani ; Mustonen, Tero ; Tóth, Géza ; Halonen, Niina ; Kordás, Krisztián ; Vähäkangas, Jouko ; Moilanen, Hannu</creatorcontrib><description>A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200879581</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>07.07.Df ; 73.50.Td ; 73.63.Fg ; 81.07.De ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Physica Status Solidi (b), 2008-10, Vol.245 (10), p.2343-2346</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</citedby><cites>FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200879581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200879581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20829698$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heszler, Peter</creatorcontrib><creatorcontrib>Gingl, Zoltan</creatorcontrib><creatorcontrib>Mingesz, Robert</creatorcontrib><creatorcontrib>Csengeri, Attila</creatorcontrib><creatorcontrib>Haspel, Henrik</creatorcontrib><creatorcontrib>Kukovecz, Akos</creatorcontrib><creatorcontrib>Kónya, Zoltan</creatorcontrib><creatorcontrib>Kiricsi, Imre</creatorcontrib><creatorcontrib>Ionescu, Radu</creatorcontrib><creatorcontrib>Mäklin, Jani</creatorcontrib><creatorcontrib>Mustonen, Tero</creatorcontrib><creatorcontrib>Tóth, Géza</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Kordás, Krisztián</creatorcontrib><creatorcontrib>Vähäkangas, Jouko</creatorcontrib><creatorcontrib>Moilanen, Hannu</creatorcontrib><title>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</title><title>Physica Status Solidi (b)</title><addtitle>Phys. Status Solidi B</addtitle><description>A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>07.07.Df</subject><subject>73.50.Td</subject><subject>73.63.Fg</subject><subject>81.07.De</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMKVcy5wS_Ejqe0jlDcIEOVxtDaODYGQFG8i4O9xKaq4cRppd2Z2dgjZZnTEKOV7M8RixClVUueKrZAByzlLhc7ZKhlQIWnKtOTrZAPxhVIqmWADcnEYKt8lzntnu6T1ia972_XQVW2TuOYZGuvK5AkwQddg1TwlcW4hFBEaaNquL9zPqg24SdY81Oi2fnFI7o-P7ian6eX1ydlk_zK1QqmYiHuvPFcaVDbmRWm1AutVxvWYRyydskWmROYkp8CphwJKLkrQuWallqUYkt2F7yy0773DzrxVaF1dQ-PaHo3IZJ7rMY3E0YJoQ4sYnDezUL1B-DKMmnlnZt6ZWXYWBTu_zoAWah_i-xUuVZyqGFKryNML3kdVu69_XM3NdHrw90a60FbYuc-lFsKrGUshc_N4dWJuxcPF5Dybmqn4Bq7ejfo</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Heszler, Peter</creator><creator>Gingl, Zoltan</creator><creator>Mingesz, Robert</creator><creator>Csengeri, Attila</creator><creator>Haspel, Henrik</creator><creator>Kukovecz, Akos</creator><creator>Kónya, Zoltan</creator><creator>Kiricsi, Imre</creator><creator>Ionescu, Radu</creator><creator>Mäklin, Jani</creator><creator>Mustonen, Tero</creator><creator>Tóth, Géza</creator><creator>Halonen, Niina</creator><creator>Kordás, Krisztián</creator><creator>Vähäkangas, Jouko</creator><creator>Moilanen, Hannu</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200810</creationdate><title>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</title><author>Heszler, Peter ; Gingl, Zoltan ; Mingesz, Robert ; Csengeri, Attila ; Haspel, Henrik ; Kukovecz, Akos ; Kónya, Zoltan ; Kiricsi, Imre ; Ionescu, Radu ; Mäklin, Jani ; Mustonen, Tero ; Tóth, Géza ; Halonen, Niina ; Kordás, Krisztián ; Vähäkangas, Jouko ; Moilanen, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-32ff8f289a8462bdc98acf842962cf8de8cb4834e720a20fabad23da9591d97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>07.07.Df</topic><topic>73.50.Td</topic><topic>73.63.Fg</topic><topic>81.07.De</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heszler, Peter</creatorcontrib><creatorcontrib>Gingl, Zoltan</creatorcontrib><creatorcontrib>Mingesz, Robert</creatorcontrib><creatorcontrib>Csengeri, Attila</creatorcontrib><creatorcontrib>Haspel, Henrik</creatorcontrib><creatorcontrib>Kukovecz, Akos</creatorcontrib><creatorcontrib>Kónya, Zoltan</creatorcontrib><creatorcontrib>Kiricsi, Imre</creatorcontrib><creatorcontrib>Ionescu, Radu</creatorcontrib><creatorcontrib>Mäklin, Jani</creatorcontrib><creatorcontrib>Mustonen, Tero</creatorcontrib><creatorcontrib>Tóth, Géza</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Kordás, Krisztián</creatorcontrib><creatorcontrib>Vähäkangas, Jouko</creatorcontrib><creatorcontrib>Moilanen, Hannu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heszler, Peter</au><au>Gingl, Zoltan</au><au>Mingesz, Robert</au><au>Csengeri, Attila</au><au>Haspel, Henrik</au><au>Kukovecz, Akos</au><au>Kónya, Zoltan</au><au>Kiricsi, Imre</au><au>Ionescu, Radu</au><au>Mäklin, Jani</au><au>Mustonen, Tero</au><au>Tóth, Géza</au><au>Halonen, Niina</au><au>Kordás, Krisztián</au><au>Vähäkangas, Jouko</au><au>Moilanen, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2008-10</date><risdate>2008</risdate><volume>245</volume><issue>10</issue><spage>2343</spage><epage>2346</epage><pages>2343-2346</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>A low‐noise electronic system is built and tested for fluctuation enhanced sensing. This latter is a new technique and based on the determination of the power spectral density of the stationary resistance fluctuations of semiconductor gas sensors. Its use is advantageous for improving the chemical selectivity of sensors. However, subsequent to an initial fast change of the sensor mean resistance, as a sensor is exposed to an analyte gas, a typical drift of the resistance can be observed. This effect hinders evolving stacionary conditions and thus acquiring fast measurements when applying fluctuation enhanced sensing. Therefore, this drift effect is studied both experimentally and theoretically. Functionalized carbon nanotube layers on silicon chips serve as active material for the experimental investigations. Power spectral density functions are measured and simulated numerically with and without drift conditions. The results are compared and the effect of resistive drift on fluctuation enhanced sensing is discussed. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200879581</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2008-10, Vol.245 (10), p.2343-2346
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_34755960
source Wiley Online Library Journals Frontfile Complete
subjects 07.07.Df
73.50.Td
73.63.Fg
81.07.De
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Physics
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
title Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift%20effect%20of%20fluctuation%20enhanced%20gas%20sensing%20on%20carbon%20nanotube%20sensors&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Heszler,%20Peter&rft.date=2008-10&rft.volume=245&rft.issue=10&rft.spage=2343&rft.epage=2346&rft.pages=2343-2346&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200879581&rft_dat=%3Cproquest_cross%3E34755960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34755960&rft_id=info:pmid/&rfr_iscdi=true