Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry

Steady-state Reynolds averaged Navier–Stokes (RANS) simulations are presented for the three-dimensional flow over a generic tractor trailer placed in the Auburn University 3×4 ft2 suction wind tunnel. The width of the truck geometry is 10 in., and the height and length of the trailer are 1.392 and 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2009-08, Vol.131 (8), p.081201 (9 )-081201 (9 )
Hauptverfasser: Veluri, Subrahmanya P, Roy, Christopher J, Ahmed, Anwar, Rifki, Rifki, Worley, John C, Recktenwald, Bryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 081201 (9 )
container_issue 8
container_start_page 081201 (9 )
container_title Journal of fluids engineering
container_volume 131
creator Veluri, Subrahmanya P
Roy, Christopher J
Ahmed, Anwar
Rifki, Rifki
Worley, John C
Recktenwald, Bryan
description Steady-state Reynolds averaged Navier–Stokes (RANS) simulations are presented for the three-dimensional flow over a generic tractor trailer placed in the Auburn University 3×4 ft2 suction wind tunnel. The width of the truck geometry is 10 in., and the height and length of the trailer are 1.392 and 3.4 times the width, respectively. The computational model of the wind tunnel is validated by comparing the numerical results with the data from the empty wind tunnel experiments. The comparisons include the boundary layer properties at three different locations on the floor of the test section and the flow angularity at the beginning of the test section. Three grid levels are used for the simulation of the truck geometry placed in the test section of the wind tunnel. The coarse mesh consists of 3.4×106 cells, the medium mesh consists of 11.2×106 cells and the fine mesh consists of 25.8×106 cells. The turbulence models used for both the empty tunnel simulations and the truck geometry placed in the wind tunnel are the standard Wilcox 1998 k-ω model, the SST k-ω model, the standard k-ε model, and the Spalart–Allmaras model. The surface pressure distributions on the truck geometry and the overall drag are predicted from the simulations and compared with the experimental data. The computational predictions compared well with the experimental data. This study contributes a new validation data set and computations for high Reynolds number bluff-body flows. The validation data set can be used for initial assessment in evaluating RANS models, which will be used for studying the drag or drag trends predicted by the baseline truck geometries.
doi_str_mv 10.1115/1.3155995
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34753817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34753817</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-62914234734e982c6c1847cb06893b35ec494578b6a84ef9cf1942ed2c8b26b73</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD4Wrt10o-CiTm4ebbKUwSeCCxUEFyHN3EKkbWqSgvPvrczg6my--3HuIeQM6DUAyCVcc5BSa7lHFiCZKjWFj32yoFSrkjHKDslRSl-UAudCLcjnU_BDLlahH6dssw-D7Za3PyNG3-OQbVfcYAzrzWB774rXPK03RWgLW7z6fux863FdvEXrcojLOX2HsbjH0GOOmxNy0Nou4ekuj8n73e3b6qF8frl_XN08l5YDzWXFNAjGRc0FasVc5UCJ2jW0Upo3XKITWshaNZVVAlvtWtCC4Zo51bCqqfkxudx6xxi-J0zZ9D457Do7YJiSmdWSK_gDr7agiyGliK0Z5zdt3Big5m8-A2Y338xe7KQ2Odu10Q7Op_8DNnesgMHMnW85m3o0X2GK84LJiJoyIfkv0vB3tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34753817</pqid></control><display><type>article</type><title>Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry</title><source>ASME Transactions Journals (Current)</source><creator>Veluri, Subrahmanya P ; Roy, Christopher J ; Ahmed, Anwar ; Rifki, Rifki ; Worley, John C ; Recktenwald, Bryan</creator><creatorcontrib>Veluri, Subrahmanya P ; Roy, Christopher J ; Ahmed, Anwar ; Rifki, Rifki ; Worley, John C ; Recktenwald, Bryan</creatorcontrib><description>Steady-state Reynolds averaged Navier–Stokes (RANS) simulations are presented for the three-dimensional flow over a generic tractor trailer placed in the Auburn University 3×4 ft2 suction wind tunnel. The width of the truck geometry is 10 in., and the height and length of the trailer are 1.392 and 3.4 times the width, respectively. The computational model of the wind tunnel is validated by comparing the numerical results with the data from the empty wind tunnel experiments. The comparisons include the boundary layer properties at three different locations on the floor of the test section and the flow angularity at the beginning of the test section. Three grid levels are used for the simulation of the truck geometry placed in the test section of the wind tunnel. The coarse mesh consists of 3.4×106 cells, the medium mesh consists of 11.2×106 cells and the fine mesh consists of 25.8×106 cells. The turbulence models used for both the empty tunnel simulations and the truck geometry placed in the wind tunnel are the standard Wilcox 1998 k-ω model, the SST k-ω model, the standard k-ε model, and the Spalart–Allmaras model. The surface pressure distributions on the truck geometry and the overall drag are predicted from the simulations and compared with the experimental data. The computational predictions compared well with the experimental data. This study contributes a new validation data set and computations for high Reynolds number bluff-body flows. The validation data set can be used for initial assessment in evaluating RANS models, which will be used for studying the drag or drag trends predicted by the baseline truck geometries.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.3155995</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Fundamental Issues and Canonical Flows ; Ground, air and sea transportation, marine construction ; Instrumentation for fluid dynamics ; Physics ; Road transportation and traffic</subject><ispartof>Journal of fluids engineering, 2009-08, Vol.131 (8), p.081201 (9 )-081201 (9 )</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-62914234734e982c6c1847cb06893b35ec494578b6a84ef9cf1942ed2c8b26b73</citedby><cites>FETCH-LOGICAL-a310t-62914234734e982c6c1847cb06893b35ec494578b6a84ef9cf1942ed2c8b26b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21846121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Veluri, Subrahmanya P</creatorcontrib><creatorcontrib>Roy, Christopher J</creatorcontrib><creatorcontrib>Ahmed, Anwar</creatorcontrib><creatorcontrib>Rifki, Rifki</creatorcontrib><creatorcontrib>Worley, John C</creatorcontrib><creatorcontrib>Recktenwald, Bryan</creatorcontrib><title>Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>Steady-state Reynolds averaged Navier–Stokes (RANS) simulations are presented for the three-dimensional flow over a generic tractor trailer placed in the Auburn University 3×4 ft2 suction wind tunnel. The width of the truck geometry is 10 in., and the height and length of the trailer are 1.392 and 3.4 times the width, respectively. The computational model of the wind tunnel is validated by comparing the numerical results with the data from the empty wind tunnel experiments. The comparisons include the boundary layer properties at three different locations on the floor of the test section and the flow angularity at the beginning of the test section. Three grid levels are used for the simulation of the truck geometry placed in the test section of the wind tunnel. The coarse mesh consists of 3.4×106 cells, the medium mesh consists of 11.2×106 cells and the fine mesh consists of 25.8×106 cells. The turbulence models used for both the empty tunnel simulations and the truck geometry placed in the wind tunnel are the standard Wilcox 1998 k-ω model, the SST k-ω model, the standard k-ε model, and the Spalart–Allmaras model. The surface pressure distributions on the truck geometry and the overall drag are predicted from the simulations and compared with the experimental data. The computational predictions compared well with the experimental data. This study contributes a new validation data set and computations for high Reynolds number bluff-body flows. The validation data set can be used for initial assessment in evaluating RANS models, which will be used for studying the drag or drag trends predicted by the baseline truck geometries.</description><subject>Applied sciences</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fundamental Issues and Canonical Flows</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Road transportation and traffic</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD4Wrt10o-CiTm4ebbKUwSeCCxUEFyHN3EKkbWqSgvPvrczg6my--3HuIeQM6DUAyCVcc5BSa7lHFiCZKjWFj32yoFSrkjHKDslRSl-UAudCLcjnU_BDLlahH6dssw-D7Za3PyNG3-OQbVfcYAzrzWB774rXPK03RWgLW7z6fux863FdvEXrcojLOX2HsbjH0GOOmxNy0Nou4ekuj8n73e3b6qF8frl_XN08l5YDzWXFNAjGRc0FasVc5UCJ2jW0Upo3XKITWshaNZVVAlvtWtCC4Zo51bCqqfkxudx6xxi-J0zZ9D457Do7YJiSmdWSK_gDr7agiyGliK0Z5zdt3Big5m8-A2Y338xe7KQ2Odu10Q7Op_8DNnesgMHMnW85m3o0X2GK84LJiJoyIfkv0vB3tg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Veluri, Subrahmanya P</creator><creator>Roy, Christopher J</creator><creator>Ahmed, Anwar</creator><creator>Rifki, Rifki</creator><creator>Worley, John C</creator><creator>Recktenwald, Bryan</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090801</creationdate><title>Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry</title><author>Veluri, Subrahmanya P ; Roy, Christopher J ; Ahmed, Anwar ; Rifki, Rifki ; Worley, John C ; Recktenwald, Bryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-62914234734e982c6c1847cb06893b35ec494578b6a84ef9cf1942ed2c8b26b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fundamental Issues and Canonical Flows</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Road transportation and traffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veluri, Subrahmanya P</creatorcontrib><creatorcontrib>Roy, Christopher J</creatorcontrib><creatorcontrib>Ahmed, Anwar</creatorcontrib><creatorcontrib>Rifki, Rifki</creatorcontrib><creatorcontrib>Worley, John C</creatorcontrib><creatorcontrib>Recktenwald, Bryan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veluri, Subrahmanya P</au><au>Roy, Christopher J</au><au>Ahmed, Anwar</au><au>Rifki, Rifki</au><au>Worley, John C</au><au>Recktenwald, Bryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>131</volume><issue>8</issue><spage>081201 (9 )</spage><epage>081201 (9 )</epage><pages>081201 (9 )-081201 (9 )</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>Steady-state Reynolds averaged Navier–Stokes (RANS) simulations are presented for the three-dimensional flow over a generic tractor trailer placed in the Auburn University 3×4 ft2 suction wind tunnel. The width of the truck geometry is 10 in., and the height and length of the trailer are 1.392 and 3.4 times the width, respectively. The computational model of the wind tunnel is validated by comparing the numerical results with the data from the empty wind tunnel experiments. The comparisons include the boundary layer properties at three different locations on the floor of the test section and the flow angularity at the beginning of the test section. Three grid levels are used for the simulation of the truck geometry placed in the test section of the wind tunnel. The coarse mesh consists of 3.4×106 cells, the medium mesh consists of 11.2×106 cells and the fine mesh consists of 25.8×106 cells. The turbulence models used for both the empty tunnel simulations and the truck geometry placed in the wind tunnel are the standard Wilcox 1998 k-ω model, the SST k-ω model, the standard k-ε model, and the Spalart–Allmaras model. The surface pressure distributions on the truck geometry and the overall drag are predicted from the simulations and compared with the experimental data. The computational predictions compared well with the experimental data. This study contributes a new validation data set and computations for high Reynolds number bluff-body flows. The validation data set can be used for initial assessment in evaluating RANS models, which will be used for studying the drag or drag trends predicted by the baseline truck geometries.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.3155995</doi></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 2009-08, Vol.131 (8), p.081201 (9 )-081201 (9 )
issn 0098-2202
1528-901X
language eng
recordid cdi_proquest_miscellaneous_34753817
source ASME Transactions Journals (Current)
subjects Applied sciences
Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Fundamental Issues and Canonical Flows
Ground, air and sea transportation, marine construction
Instrumentation for fluid dynamics
Physics
Road transportation and traffic
title Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Computational/Experimental%20Aerodynamic%20Study%20of%20a%20Simplified%20Tractor/Trailer%20Geometry&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Veluri,%20Subrahmanya%20P&rft.date=2009-08-01&rft.volume=131&rft.issue=8&rft.spage=081201%20(9%20)&rft.epage=081201%20(9%20)&rft.pages=081201%20(9%20)-081201%20(9%20)&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.3155995&rft_dat=%3Cproquest_cross%3E34753817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34753817&rft_id=info:pmid/&rfr_iscdi=true