Discretization error due to the identity operator in surface integral equations

We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2009-10, Vol.180 (10), p.1746-1752
Hauptverfasser: Ergul, O, Gurel, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1752
container_issue 10
container_start_page 1746
container_title Computer physics communications
container_volume 180
creator Ergul, O
Gurel, L
description We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.
doi_str_mv 10.1016/j.cpc.2009.04.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34741730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465509001313</els_id><sourcerecordid>34741730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8sSWcP2InYkLlU6rUBWbLOBdw1Sap7SDBr8elzCx3w_s-J91DyCWDkgFT1-vSja7kAE0JsgQOR2TGat0UvJHymMwAGBRSVdUpOYtxDQBaN2JGVnc-uoDJf9vkh55iCEOg7YQ0DTR9IPUt9smnLzqMGGzKoe9pnEJnXQ77hO_Bbijupl8-npOTzm4iXvztOXl9uH9ZPBXL1ePz4nZZOKFZKhR3SgnlmBOWN7VqLZNcNbXuoKpAWdHhm6rrPLiCjoNjtqoqpR2HWrNaiTm5Otwdw7CbMCazzY_gZmN7HKZohNSSaQG5yA5FF4YYA3ZmDH5rw5dhYPbqzNpkdWavzoA0WV1mbg4M5g8-PQYTncfeYesDumTawf9D_wBA_3Z0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34741730</pqid></control><display><type>article</type><title>Discretization error due to the identity operator in surface integral equations</title><source>Elsevier ScienceDirect Journals</source><creator>Ergul, O ; Gurel, L</creator><creatorcontrib>Ergul, O ; Gurel, L</creatorcontrib><description>We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2009.04.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy analysis ; First-kind integral equations ; Identity operator ; Low-order basis functions ; Second-kind integral equations ; Surface integral equations</subject><ispartof>Computer physics communications, 2009-10, Vol.180 (10), p.1746-1752</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</citedby><cites>FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2009.04.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Ergul, O</creatorcontrib><creatorcontrib>Gurel, L</creatorcontrib><title>Discretization error due to the identity operator in surface integral equations</title><title>Computer physics communications</title><description>We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.</description><subject>Accuracy analysis</subject><subject>First-kind integral equations</subject><subject>Identity operator</subject><subject>Low-order basis functions</subject><subject>Second-kind integral equations</subject><subject>Surface integral equations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8sSWcP2InYkLlU6rUBWbLOBdw1Sap7SDBr8elzCx3w_s-J91DyCWDkgFT1-vSja7kAE0JsgQOR2TGat0UvJHymMwAGBRSVdUpOYtxDQBaN2JGVnc-uoDJf9vkh55iCEOg7YQ0DTR9IPUt9smnLzqMGGzKoe9pnEJnXQ77hO_Bbijupl8-npOTzm4iXvztOXl9uH9ZPBXL1ePz4nZZOKFZKhR3SgnlmBOWN7VqLZNcNbXuoKpAWdHhm6rrPLiCjoNjtqoqpR2HWrNaiTm5Otwdw7CbMCazzY_gZmN7HKZohNSSaQG5yA5FF4YYA3ZmDH5rw5dhYPbqzNpkdWavzoA0WV1mbg4M5g8-PQYTncfeYesDumTawf9D_wBA_3Z0</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Ergul, O</creator><creator>Gurel, L</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Discretization error due to the identity operator in surface integral equations</title><author>Ergul, O ; Gurel, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy analysis</topic><topic>First-kind integral equations</topic><topic>Identity operator</topic><topic>Low-order basis functions</topic><topic>Second-kind integral equations</topic><topic>Surface integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergul, O</creatorcontrib><creatorcontrib>Gurel, L</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ergul, O</au><au>Gurel, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization error due to the identity operator in surface integral equations</atitle><jtitle>Computer physics communications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>180</volume><issue>10</issue><spage>1746</spage><epage>1752</epage><pages>1746-1752</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2009.04.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2009-10, Vol.180 (10), p.1746-1752
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_34741730
source Elsevier ScienceDirect Journals
subjects Accuracy analysis
First-kind integral equations
Identity operator
Low-order basis functions
Second-kind integral equations
Surface integral equations
title Discretization error due to the identity operator in surface integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20error%20due%20to%20the%20identity%20operator%20in%20surface%20integral%20equations&rft.jtitle=Computer%20physics%20communications&rft.au=Ergul,%20O&rft.date=2009-10-01&rft.volume=180&rft.issue=10&rft.spage=1746&rft.epage=1752&rft.pages=1746-1752&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2009.04.020&rft_dat=%3Cproquest_cross%3E34741730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34741730&rft_id=info:pmid/&rft_els_id=S0010465509001313&rfr_iscdi=true