Discretization error due to the identity operator in surface integral equations
We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant ma...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2009-10, Vol.180 (10), p.1746-1752 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1752 |
---|---|
container_issue | 10 |
container_start_page | 1746 |
container_title | Computer physics communications |
container_volume | 180 |
creator | Ergul, O Gurel, L |
description | We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly. |
doi_str_mv | 10.1016/j.cpc.2009.04.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34741730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465509001313</els_id><sourcerecordid>34741730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8sSWcP2InYkLlU6rUBWbLOBdw1Sap7SDBr8elzCx3w_s-J91DyCWDkgFT1-vSja7kAE0JsgQOR2TGat0UvJHymMwAGBRSVdUpOYtxDQBaN2JGVnc-uoDJf9vkh55iCEOg7YQ0DTR9IPUt9smnLzqMGGzKoe9pnEJnXQ77hO_Bbijupl8-npOTzm4iXvztOXl9uH9ZPBXL1ePz4nZZOKFZKhR3SgnlmBOWN7VqLZNcNbXuoKpAWdHhm6rrPLiCjoNjtqoqpR2HWrNaiTm5Otwdw7CbMCazzY_gZmN7HKZohNSSaQG5yA5FF4YYA3ZmDH5rw5dhYPbqzNpkdWavzoA0WV1mbg4M5g8-PQYTncfeYesDumTawf9D_wBA_3Z0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34741730</pqid></control><display><type>article</type><title>Discretization error due to the identity operator in surface integral equations</title><source>Elsevier ScienceDirect Journals</source><creator>Ergul, O ; Gurel, L</creator><creatorcontrib>Ergul, O ; Gurel, L</creatorcontrib><description>We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2009.04.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy analysis ; First-kind integral equations ; Identity operator ; Low-order basis functions ; Second-kind integral equations ; Surface integral equations</subject><ispartof>Computer physics communications, 2009-10, Vol.180 (10), p.1746-1752</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</citedby><cites>FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2009.04.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Ergul, O</creatorcontrib><creatorcontrib>Gurel, L</creatorcontrib><title>Discretization error due to the identity operator in surface integral equations</title><title>Computer physics communications</title><description>We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.</description><subject>Accuracy analysis</subject><subject>First-kind integral equations</subject><subject>Identity operator</subject><subject>Low-order basis functions</subject><subject>Second-kind integral equations</subject><subject>Surface integral equations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8sSWcP2InYkLlU6rUBWbLOBdw1Sap7SDBr8elzCx3w_s-J91DyCWDkgFT1-vSja7kAE0JsgQOR2TGat0UvJHymMwAGBRSVdUpOYtxDQBaN2JGVnc-uoDJf9vkh55iCEOg7YQ0DTR9IPUt9smnLzqMGGzKoe9pnEJnXQ77hO_Bbijupl8-npOTzm4iXvztOXl9uH9ZPBXL1ePz4nZZOKFZKhR3SgnlmBOWN7VqLZNcNbXuoKpAWdHhm6rrPLiCjoNjtqoqpR2HWrNaiTm5Otwdw7CbMCazzY_gZmN7HKZohNSSaQG5yA5FF4YYA3ZmDH5rw5dhYPbqzNpkdWavzoA0WV1mbg4M5g8-PQYTncfeYesDumTawf9D_wBA_3Z0</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Ergul, O</creator><creator>Gurel, L</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Discretization error due to the identity operator in surface integral equations</title><author>Ergul, O ; Gurel, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-62c6636c1c3a2986da1426987f05506a3feb688eb6260f20c1a55567c20871863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy analysis</topic><topic>First-kind integral equations</topic><topic>Identity operator</topic><topic>Low-order basis functions</topic><topic>Second-kind integral equations</topic><topic>Surface integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergul, O</creatorcontrib><creatorcontrib>Gurel, L</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ergul, O</au><au>Gurel, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization error due to the identity operator in surface integral equations</atitle><jtitle>Computer physics communications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>180</volume><issue>10</issue><spage>1746</spage><epage>1752</epage><pages>1746-1752</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2009.04.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2009-10, Vol.180 (10), p.1746-1752 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_34741730 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy analysis First-kind integral equations Identity operator Low-order basis functions Second-kind integral equations Surface integral equations |
title | Discretization error due to the identity operator in surface integral equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20error%20due%20to%20the%20identity%20operator%20in%20surface%20integral%20equations&rft.jtitle=Computer%20physics%20communications&rft.au=Ergul,%20O&rft.date=2009-10-01&rft.volume=180&rft.issue=10&rft.spage=1746&rft.epage=1752&rft.pages=1746-1752&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2009.04.020&rft_dat=%3Cproquest_cross%3E34741730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34741730&rft_id=info:pmid/&rft_els_id=S0010465509001313&rfr_iscdi=true |