Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors

Resistive electrochemical sensors based on vanadium oxides equipped with a pair of interdigital Au electrodes can detect NH 3 gas selectively at high temperature (500 °C). NH 3 addition in a base gas increased the relative conductance ( σ/ σ 0). Addition of less electronegative cation (Ce, Zr, Mg) t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2009-09, Vol.141 (2), p.410-416
Hauptverfasser: Shimizu, Ken-ichi, Chinzei, Isao, Nishiyama, Hiroyuki, Kakimoto, Shiro, Sugaya, Satoshi, Matsutani, Wataru, Satsuma, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 2
container_start_page 410
container_title Sensors and actuators. B, Chemical
container_volume 141
creator Shimizu, Ken-ichi
Chinzei, Isao
Nishiyama, Hiroyuki
Kakimoto, Shiro
Sugaya, Satoshi
Matsutani, Wataru
Satsuma, Atsushi
description Resistive electrochemical sensors based on vanadium oxides equipped with a pair of interdigital Au electrodes can detect NH 3 gas selectively at high temperature (500 °C). NH 3 addition in a base gas increased the relative conductance ( σ/ σ 0). Addition of less electronegative cation (Ce, Zr, Mg) to V 2O 5 increased the response and recovery rates, while electronegative cation (Al, Fe, Ni) increased sensor response magnitude. Among the samples tested, Al and Ce co-doped sample (VAlCe) was the most suitable sensor. The VAlCe sensor responded rapidly and linearly to change in concentration of NH 3 in the oxygen rich gas mixture and showed high selectivity in the presence of coexisting gases (NO, CO, H 2). The presence of water vapor did not markedly decrease the response magnitude but increased the response rate; the 90% response and 50% recovery times were less than 15 s. Based on the in situ UV–vis results, a possible sensing mechanism is proposed; adsorbed NH 3 causes reduction of V 5+ to V 4+, which results in the conductivity increase. Role of surface acidity on the selective detection of NH 3 as a basic molecule is also discussed.
doi_str_mv 10.1016/j.snb.2009.06.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34737386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400509005383</els_id><sourcerecordid>34737386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-8fb04c8843f29cf9d41fc3a41d19effee49baac9919e43b96cab5ea2f13050bf3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7j5xC1hHbtJLE6oPKVKXOBsOc66ddXExU4q-Pe4jzOnnZVmRpqPkFsGOQNW3q_z2Dd5ASBzKHMQ9RmZsLriGYeqOicTkMUsEwCzS3IV4xoABC9hQpZPfottttO9bt3YUf_jWoxURxqxj65f0k4PGJzeRGp9oCu3XNEBuy0GPYwBqT8ot8MU2KA5KN11vneaLk81PsRrcmFTB96c7pR8vTx_zt-yxcfr-_xxkRle1ENW2waEqWvBbSGNla1g1nAtWMskWosoZKO1kTK9gjeyNLqZoS4s4zCDxvIpuTv2boP_HjEOqnPR4Gaje_RjVFxUvOJ1mYzsaDTBxxjQqm1wnQ6_ioHaI1VrlZCqPVIFpUpIU-bhmMG0YOcwqGgc9gZbF9J01Xr3T_oPvTKCQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34737386</pqid></control><display><type>article</type><title>Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shimizu, Ken-ichi ; Chinzei, Isao ; Nishiyama, Hiroyuki ; Kakimoto, Shiro ; Sugaya, Satoshi ; Matsutani, Wataru ; Satsuma, Atsushi</creator><creatorcontrib>Shimizu, Ken-ichi ; Chinzei, Isao ; Nishiyama, Hiroyuki ; Kakimoto, Shiro ; Sugaya, Satoshi ; Matsutani, Wataru ; Satsuma, Atsushi</creatorcontrib><description>Resistive electrochemical sensors based on vanadium oxides equipped with a pair of interdigital Au electrodes can detect NH 3 gas selectively at high temperature (500 °C). NH 3 addition in a base gas increased the relative conductance ( σ/ σ 0). Addition of less electronegative cation (Ce, Zr, Mg) to V 2O 5 increased the response and recovery rates, while electronegative cation (Al, Fe, Ni) increased sensor response magnitude. Among the samples tested, Al and Ce co-doped sample (VAlCe) was the most suitable sensor. The VAlCe sensor responded rapidly and linearly to change in concentration of NH 3 in the oxygen rich gas mixture and showed high selectivity in the presence of coexisting gases (NO, CO, H 2). The presence of water vapor did not markedly decrease the response magnitude but increased the response rate; the 90% response and 50% recovery times were less than 15 s. Based on the in situ UV–vis results, a possible sensing mechanism is proposed; adsorbed NH 3 causes reduction of V 5+ to V 4+, which results in the conductivity increase. Role of surface acidity on the selective detection of NH 3 as a basic molecule is also discussed.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2009.06.048</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ammonia gas sensor ; Diesel engine exhaust ; Vanadium oxides</subject><ispartof>Sensors and actuators. B, Chemical, 2009-09, Vol.141 (2), p.410-416</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-8fb04c8843f29cf9d41fc3a41d19effee49baac9919e43b96cab5ea2f13050bf3</citedby><cites>FETCH-LOGICAL-c328t-8fb04c8843f29cf9d41fc3a41d19effee49baac9919e43b96cab5ea2f13050bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2009.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shimizu, Ken-ichi</creatorcontrib><creatorcontrib>Chinzei, Isao</creatorcontrib><creatorcontrib>Nishiyama, Hiroyuki</creatorcontrib><creatorcontrib>Kakimoto, Shiro</creatorcontrib><creatorcontrib>Sugaya, Satoshi</creatorcontrib><creatorcontrib>Matsutani, Wataru</creatorcontrib><creatorcontrib>Satsuma, Atsushi</creatorcontrib><title>Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors</title><title>Sensors and actuators. B, Chemical</title><description>Resistive electrochemical sensors based on vanadium oxides equipped with a pair of interdigital Au electrodes can detect NH 3 gas selectively at high temperature (500 °C). NH 3 addition in a base gas increased the relative conductance ( σ/ σ 0). Addition of less electronegative cation (Ce, Zr, Mg) to V 2O 5 increased the response and recovery rates, while electronegative cation (Al, Fe, Ni) increased sensor response magnitude. Among the samples tested, Al and Ce co-doped sample (VAlCe) was the most suitable sensor. The VAlCe sensor responded rapidly and linearly to change in concentration of NH 3 in the oxygen rich gas mixture and showed high selectivity in the presence of coexisting gases (NO, CO, H 2). The presence of water vapor did not markedly decrease the response magnitude but increased the response rate; the 90% response and 50% recovery times were less than 15 s. Based on the in situ UV–vis results, a possible sensing mechanism is proposed; adsorbed NH 3 causes reduction of V 5+ to V 4+, which results in the conductivity increase. Role of surface acidity on the selective detection of NH 3 as a basic molecule is also discussed.</description><subject>Ammonia gas sensor</subject><subject>Diesel engine exhaust</subject><subject>Vanadium oxides</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7j5xC1hHbtJLE6oPKVKXOBsOc66ddXExU4q-Pe4jzOnnZVmRpqPkFsGOQNW3q_z2Dd5ASBzKHMQ9RmZsLriGYeqOicTkMUsEwCzS3IV4xoABC9hQpZPfottttO9bt3YUf_jWoxURxqxj65f0k4PGJzeRGp9oCu3XNEBuy0GPYwBqT8ot8MU2KA5KN11vneaLk81PsRrcmFTB96c7pR8vTx_zt-yxcfr-_xxkRle1ENW2waEqWvBbSGNla1g1nAtWMskWosoZKO1kTK9gjeyNLqZoS4s4zCDxvIpuTv2boP_HjEOqnPR4Gaje_RjVFxUvOJ1mYzsaDTBxxjQqm1wnQ6_ioHaI1VrlZCqPVIFpUpIU-bhmMG0YOcwqGgc9gZbF9J01Xr3T_oPvTKCQA</recordid><startdate>20090907</startdate><enddate>20090907</enddate><creator>Shimizu, Ken-ichi</creator><creator>Chinzei, Isao</creator><creator>Nishiyama, Hiroyuki</creator><creator>Kakimoto, Shiro</creator><creator>Sugaya, Satoshi</creator><creator>Matsutani, Wataru</creator><creator>Satsuma, Atsushi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090907</creationdate><title>Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors</title><author>Shimizu, Ken-ichi ; Chinzei, Isao ; Nishiyama, Hiroyuki ; Kakimoto, Shiro ; Sugaya, Satoshi ; Matsutani, Wataru ; Satsuma, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-8fb04c8843f29cf9d41fc3a41d19effee49baac9919e43b96cab5ea2f13050bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ammonia gas sensor</topic><topic>Diesel engine exhaust</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Ken-ichi</creatorcontrib><creatorcontrib>Chinzei, Isao</creatorcontrib><creatorcontrib>Nishiyama, Hiroyuki</creatorcontrib><creatorcontrib>Kakimoto, Shiro</creatorcontrib><creatorcontrib>Sugaya, Satoshi</creatorcontrib><creatorcontrib>Matsutani, Wataru</creatorcontrib><creatorcontrib>Satsuma, Atsushi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Ken-ichi</au><au>Chinzei, Isao</au><au>Nishiyama, Hiroyuki</au><au>Kakimoto, Shiro</au><au>Sugaya, Satoshi</au><au>Matsutani, Wataru</au><au>Satsuma, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2009-09-07</date><risdate>2009</risdate><volume>141</volume><issue>2</issue><spage>410</spage><epage>416</epage><pages>410-416</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Resistive electrochemical sensors based on vanadium oxides equipped with a pair of interdigital Au electrodes can detect NH 3 gas selectively at high temperature (500 °C). NH 3 addition in a base gas increased the relative conductance ( σ/ σ 0). Addition of less electronegative cation (Ce, Zr, Mg) to V 2O 5 increased the response and recovery rates, while electronegative cation (Al, Fe, Ni) increased sensor response magnitude. Among the samples tested, Al and Ce co-doped sample (VAlCe) was the most suitable sensor. The VAlCe sensor responded rapidly and linearly to change in concentration of NH 3 in the oxygen rich gas mixture and showed high selectivity in the presence of coexisting gases (NO, CO, H 2). The presence of water vapor did not markedly decrease the response magnitude but increased the response rate; the 90% response and 50% recovery times were less than 15 s. Based on the in situ UV–vis results, a possible sensing mechanism is proposed; adsorbed NH 3 causes reduction of V 5+ to V 4+, which results in the conductivity increase. Role of surface acidity on the selective detection of NH 3 as a basic molecule is also discussed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2009.06.048</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2009-09, Vol.141 (2), p.410-416
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_34737386
source Access via ScienceDirect (Elsevier)
subjects Ammonia gas sensor
Diesel engine exhaust
Vanadium oxides
title Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doped-vanadium%20oxides%20as%20sensing%20materials%20for%20high%20temperature%20operative%20selective%20ammonia%20gas%20sensors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Shimizu,%20Ken-ichi&rft.date=2009-09-07&rft.volume=141&rft.issue=2&rft.spage=410&rft.epage=416&rft.pages=410-416&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2009.06.048&rft_dat=%3Cproquest_cross%3E34737386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34737386&rft_id=info:pmid/&rft_els_id=S0925400509005383&rfr_iscdi=true