Chemical Neuroecology and Community Dynamics
Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, co...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2009-07, Vol.1170 (1), p.450-455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 1 |
container_start_page | 450 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1170 |
creator | Ferrer, Ryan P. Zimmer, Richard K. |
description | Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange. |
doi_str_mv | 10.1111/j.1749-6632.2009.03908.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34721744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34721744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</originalsourceid><addsrcrecordid>eNqNkclOwzAURS0EoqXwCygrViR4SDysECq0IKqAGIRYWU7iQEqGEjei-XucpipL6o2t5_Puk30AcBD0kF0Xcw8xX7iUEuxhCIUHiYDcW-2B4fZiHwwhZMzlApMBODJmDiHC3GeHYIAE5RQxOgTn409dZLHKnVA3daXjKq8-WkeViTOuiqIps2XrXLelspA5Bgepyo0-2ewj8Dq5eRnfurOH6d34aubGAUHcVTjlMaMpjlhCIVWQEyHs7IgGaUxVkojA1pH2UUADpFGkA4iSREcJExGNORmBsz53UVffjTZLWWQm1nmuSl01RhKfYftO_18QQyYgFsEuIMdYkJ1A-61dIu_BuK6MqXUqF3VWqLqVCMpOkpzLzoXsXMhOklxLkivberqZ0USFTv4aN1YscNkDP1mu252DZfh-9bw-2wS3T8jMUq-2Car-kpQRFsi3cCof8dN9OBO-nJBfLSat4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20780075</pqid></control><display><type>article</type><title>Chemical Neuroecology and Community Dynamics</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ferrer, Ryan P. ; Zimmer, Richard K.</creator><creatorcontrib>Ferrer, Ryan P. ; Zimmer, Richard K.</creatorcontrib><description>Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>EISSN: 1930-6547</identifier><identifier>DOI: 10.1111/j.1749-6632.2009.03908.x</identifier><identifier>PMID: 19686176</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; chemical defense ; chemical signaling ; community ecology ; Ecology ; Fresh Water ; keystone species ; Marine Biology ; Nervous System Physiological Phenomena ; neuroecology ; saxitoxin (STX) ; Saxitoxin - analysis ; Saxitoxin - toxicity ; tetrodotoxin (TTX) ; Tetrodotoxin - analysis ; Tetrodotoxin - toxicity</subject><ispartof>Annals of the New York Academy of Sciences, 2009-07, Vol.1170 (1), p.450-455</ispartof><rights>2009 New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</citedby><cites>FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2009.03908.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2009.03908.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19686176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrer, Ryan P.</creatorcontrib><creatorcontrib>Zimmer, Richard K.</creatorcontrib><title>Chemical Neuroecology and Community Dynamics</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.</description><subject>Animals</subject><subject>chemical defense</subject><subject>chemical signaling</subject><subject>community ecology</subject><subject>Ecology</subject><subject>Fresh Water</subject><subject>keystone species</subject><subject>Marine Biology</subject><subject>Nervous System Physiological Phenomena</subject><subject>neuroecology</subject><subject>saxitoxin (STX)</subject><subject>Saxitoxin - analysis</subject><subject>Saxitoxin - toxicity</subject><subject>tetrodotoxin (TTX)</subject><subject>Tetrodotoxin - analysis</subject><subject>Tetrodotoxin - toxicity</subject><issn>0077-8923</issn><issn>1749-6632</issn><issn>1930-6547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkclOwzAURS0EoqXwCygrViR4SDysECq0IKqAGIRYWU7iQEqGEjei-XucpipL6o2t5_Puk30AcBD0kF0Xcw8xX7iUEuxhCIUHiYDcW-2B4fZiHwwhZMzlApMBODJmDiHC3GeHYIAE5RQxOgTn409dZLHKnVA3daXjKq8-WkeViTOuiqIps2XrXLelspA5Bgepyo0-2ewj8Dq5eRnfurOH6d34aubGAUHcVTjlMaMpjlhCIVWQEyHs7IgGaUxVkojA1pH2UUADpFGkA4iSREcJExGNORmBsz53UVffjTZLWWQm1nmuSl01RhKfYftO_18QQyYgFsEuIMdYkJ1A-61dIu_BuK6MqXUqF3VWqLqVCMpOkpzLzoXsXMhOklxLkivberqZ0USFTv4aN1YscNkDP1mu252DZfh-9bw-2wS3T8jMUq-2Car-kpQRFsi3cCof8dN9OBO-nJBfLSat4A</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Ferrer, Ryan P.</creator><creator>Zimmer, Richard K.</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>200907</creationdate><title>Chemical Neuroecology and Community Dynamics</title><author>Ferrer, Ryan P. ; Zimmer, Richard K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>chemical defense</topic><topic>chemical signaling</topic><topic>community ecology</topic><topic>Ecology</topic><topic>Fresh Water</topic><topic>keystone species</topic><topic>Marine Biology</topic><topic>Nervous System Physiological Phenomena</topic><topic>neuroecology</topic><topic>saxitoxin (STX)</topic><topic>Saxitoxin - analysis</topic><topic>Saxitoxin - toxicity</topic><topic>tetrodotoxin (TTX)</topic><topic>Tetrodotoxin - analysis</topic><topic>Tetrodotoxin - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Ryan P.</creatorcontrib><creatorcontrib>Zimmer, Richard K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Ryan P.</au><au>Zimmer, Richard K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Neuroecology and Community Dynamics</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2009-07</date><risdate>2009</risdate><volume>1170</volume><issue>1</issue><spage>450</spage><epage>455</epage><pages>450-455</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><eissn>1930-6547</eissn><abstract>Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19686176</pmid><doi>10.1111/j.1749-6632.2009.03908.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2009-07, Vol.1170 (1), p.450-455 |
issn | 0077-8923 1749-6632 1930-6547 |
language | eng |
recordid | cdi_proquest_miscellaneous_34721744 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals chemical defense chemical signaling community ecology Ecology Fresh Water keystone species Marine Biology Nervous System Physiological Phenomena neuroecology saxitoxin (STX) Saxitoxin - analysis Saxitoxin - toxicity tetrodotoxin (TTX) Tetrodotoxin - analysis Tetrodotoxin - toxicity |
title | Chemical Neuroecology and Community Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Neuroecology%20and%20Community%20Dynamics&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Ferrer,%20Ryan%20P.&rft.date=2009-07&rft.volume=1170&rft.issue=1&rft.spage=450&rft.epage=455&rft.pages=450-455&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2009.03908.x&rft_dat=%3Cproquest_cross%3E34721744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20780075&rft_id=info:pmid/19686176&rfr_iscdi=true |