Chemical Neuroecology and Community Dynamics

Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2009-07, Vol.1170 (1), p.450-455
Hauptverfasser: Ferrer, Ryan P., Zimmer, Richard K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 1
container_start_page 450
container_title Annals of the New York Academy of Sciences
container_volume 1170
creator Ferrer, Ryan P.
Zimmer, Richard K.
description Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.
doi_str_mv 10.1111/j.1749-6632.2009.03908.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34721744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34721744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</originalsourceid><addsrcrecordid>eNqNkclOwzAURS0EoqXwCygrViR4SDysECq0IKqAGIRYWU7iQEqGEjei-XucpipL6o2t5_Puk30AcBD0kF0Xcw8xX7iUEuxhCIUHiYDcW-2B4fZiHwwhZMzlApMBODJmDiHC3GeHYIAE5RQxOgTn409dZLHKnVA3daXjKq8-WkeViTOuiqIps2XrXLelspA5Bgepyo0-2ewj8Dq5eRnfurOH6d34aubGAUHcVTjlMaMpjlhCIVWQEyHs7IgGaUxVkojA1pH2UUADpFGkA4iSREcJExGNORmBsz53UVffjTZLWWQm1nmuSl01RhKfYftO_18QQyYgFsEuIMdYkJ1A-61dIu_BuK6MqXUqF3VWqLqVCMpOkpzLzoXsXMhOklxLkivberqZ0USFTv4aN1YscNkDP1mu252DZfh-9bw-2wS3T8jMUq-2Car-kpQRFsi3cCof8dN9OBO-nJBfLSat4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20780075</pqid></control><display><type>article</type><title>Chemical Neuroecology and Community Dynamics</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ferrer, Ryan P. ; Zimmer, Richard K.</creator><creatorcontrib>Ferrer, Ryan P. ; Zimmer, Richard K.</creatorcontrib><description>Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>EISSN: 1930-6547</identifier><identifier>DOI: 10.1111/j.1749-6632.2009.03908.x</identifier><identifier>PMID: 19686176</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; chemical defense ; chemical signaling ; community ecology ; Ecology ; Fresh Water ; keystone species ; Marine Biology ; Nervous System Physiological Phenomena ; neuroecology ; saxitoxin (STX) ; Saxitoxin - analysis ; Saxitoxin - toxicity ; tetrodotoxin (TTX) ; Tetrodotoxin - analysis ; Tetrodotoxin - toxicity</subject><ispartof>Annals of the New York Academy of Sciences, 2009-07, Vol.1170 (1), p.450-455</ispartof><rights>2009 New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</citedby><cites>FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2009.03908.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2009.03908.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19686176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrer, Ryan P.</creatorcontrib><creatorcontrib>Zimmer, Richard K.</creatorcontrib><title>Chemical Neuroecology and Community Dynamics</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.</description><subject>Animals</subject><subject>chemical defense</subject><subject>chemical signaling</subject><subject>community ecology</subject><subject>Ecology</subject><subject>Fresh Water</subject><subject>keystone species</subject><subject>Marine Biology</subject><subject>Nervous System Physiological Phenomena</subject><subject>neuroecology</subject><subject>saxitoxin (STX)</subject><subject>Saxitoxin - analysis</subject><subject>Saxitoxin - toxicity</subject><subject>tetrodotoxin (TTX)</subject><subject>Tetrodotoxin - analysis</subject><subject>Tetrodotoxin - toxicity</subject><issn>0077-8923</issn><issn>1749-6632</issn><issn>1930-6547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkclOwzAURS0EoqXwCygrViR4SDysECq0IKqAGIRYWU7iQEqGEjei-XucpipL6o2t5_Puk30AcBD0kF0Xcw8xX7iUEuxhCIUHiYDcW-2B4fZiHwwhZMzlApMBODJmDiHC3GeHYIAE5RQxOgTn409dZLHKnVA3daXjKq8-WkeViTOuiqIps2XrXLelspA5Bgepyo0-2ewj8Dq5eRnfurOH6d34aubGAUHcVTjlMaMpjlhCIVWQEyHs7IgGaUxVkojA1pH2UUADpFGkA4iSREcJExGNORmBsz53UVffjTZLWWQm1nmuSl01RhKfYftO_18QQyYgFsEuIMdYkJ1A-61dIu_BuK6MqXUqF3VWqLqVCMpOkpzLzoXsXMhOklxLkivberqZ0USFTv4aN1YscNkDP1mu252DZfh-9bw-2wS3T8jMUq-2Car-kpQRFsi3cCof8dN9OBO-nJBfLSat4A</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Ferrer, Ryan P.</creator><creator>Zimmer, Richard K.</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>200907</creationdate><title>Chemical Neuroecology and Community Dynamics</title><author>Ferrer, Ryan P. ; Zimmer, Richard K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5318-a2f8c76f2b7d606a08399012b65fc6add95d601e415651e1be501ddebd79b6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>chemical defense</topic><topic>chemical signaling</topic><topic>community ecology</topic><topic>Ecology</topic><topic>Fresh Water</topic><topic>keystone species</topic><topic>Marine Biology</topic><topic>Nervous System Physiological Phenomena</topic><topic>neuroecology</topic><topic>saxitoxin (STX)</topic><topic>Saxitoxin - analysis</topic><topic>Saxitoxin - toxicity</topic><topic>tetrodotoxin (TTX)</topic><topic>Tetrodotoxin - analysis</topic><topic>Tetrodotoxin - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Ryan P.</creatorcontrib><creatorcontrib>Zimmer, Richard K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Ryan P.</au><au>Zimmer, Richard K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Neuroecology and Community Dynamics</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2009-07</date><risdate>2009</risdate><volume>1170</volume><issue>1</issue><spage>450</spage><epage>455</epage><pages>450-455</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><eissn>1930-6547</eissn><abstract>Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage‐gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher‐order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community‐wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19686176</pmid><doi>10.1111/j.1749-6632.2009.03908.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2009-07, Vol.1170 (1), p.450-455
issn 0077-8923
1749-6632
1930-6547
language eng
recordid cdi_proquest_miscellaneous_34721744
source MEDLINE; Access via Wiley Online Library
subjects Animals
chemical defense
chemical signaling
community ecology
Ecology
Fresh Water
keystone species
Marine Biology
Nervous System Physiological Phenomena
neuroecology
saxitoxin (STX)
Saxitoxin - analysis
Saxitoxin - toxicity
tetrodotoxin (TTX)
Tetrodotoxin - analysis
Tetrodotoxin - toxicity
title Chemical Neuroecology and Community Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Neuroecology%20and%20Community%20Dynamics&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Ferrer,%20Ryan%20P.&rft.date=2009-07&rft.volume=1170&rft.issue=1&rft.spage=450&rft.epage=455&rft.pages=450-455&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2009.03908.x&rft_dat=%3Cproquest_cross%3E34721744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20780075&rft_id=info:pmid/19686176&rfr_iscdi=true