Thermal hydraulic design of a hydride-fueled inverted PWR core

An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U–ZrH 1.6) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U–ZrH 1.6. The inverted design features circular cooling channels surrounded by pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2009-08, Vol.239 (8), p.1471-1480
Hauptverfasser: Malen, J.A., Todreas, N.E., Hejzlar, P., Ferroni, P., Bergles, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 8
container_start_page 1471
container_title Nuclear engineering and design
container_volume 239
creator Malen, J.A.
Todreas, N.E.
Hejzlar, P.
Ferroni, P.
Bergles, A.
description An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U–ZrH 1.6) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U–ZrH 1.6. The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t, which is 135% of the optimally powered standard design (5080 MW t—determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.
doi_str_mv 10.1016/j.nucengdes.2009.02.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34709357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549309001502</els_id><sourcerecordid>34709357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a94833c44738ec3202bf4da96fb745c1f1ca6fb2dee7ae341ae1925fbcbd2d0d3</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4G9-Rt13ztprkIpfgFBUUqegvZ5KVN2e7WZLfQf29qxauPgTc8ZgbeIHRNcEEwqW7XRTsYaJcWYkExlgWmCdUJGpGJoLko5ecpGmFMZV5yyc7RRYxrfBhJR-husYKw0U222tugh8abLAX5ZZt1LtM_V28hdwM0YDPf7iD0ibx-vGWmC3CJzpxuIlz97jF6f7hfzJ7y-cvj82w6zw3jVZ9rySeMGc4Fm4BhFNPacatl5WrBS0McMTpxagGEBsaJBiJp6WpTW2qxZWN0c8zdhu5rgNirjY8Gmka30A1RMS6wZKVIQnEUmtDFGMCpbfAbHfaKYHXoS63VX1_q0JfCNKFKzunRCemPnYegovHQGrA-gOmV7fy_Gd9NUnkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34709357</pqid></control><display><type>article</type><title>Thermal hydraulic design of a hydride-fueled inverted PWR core</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Malen, J.A. ; Todreas, N.E. ; Hejzlar, P. ; Ferroni, P. ; Bergles, A.</creator><creatorcontrib>Malen, J.A. ; Todreas, N.E. ; Hejzlar, P. ; Ferroni, P. ; Bergles, A.</creatorcontrib><description>An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U–ZrH 1.6) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U–ZrH 1.6. The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t, which is 135% of the optimally powered standard design (5080 MW t—determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2009.02.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Nuclear engineering and design, 2009-08, Vol.239 (8), p.1471-1480</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a94833c44738ec3202bf4da96fb745c1f1ca6fb2dee7ae341ae1925fbcbd2d0d3</citedby><cites>FETCH-LOGICAL-c346t-a94833c44738ec3202bf4da96fb745c1f1ca6fb2dee7ae341ae1925fbcbd2d0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2009.02.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Malen, J.A.</creatorcontrib><creatorcontrib>Todreas, N.E.</creatorcontrib><creatorcontrib>Hejzlar, P.</creatorcontrib><creatorcontrib>Ferroni, P.</creatorcontrib><creatorcontrib>Bergles, A.</creatorcontrib><title>Thermal hydraulic design of a hydride-fueled inverted PWR core</title><title>Nuclear engineering and design</title><description>An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U–ZrH 1.6) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U–ZrH 1.6. The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t, which is 135% of the optimally powered standard design (5080 MW t—determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.</description><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4G9-Rt13ztprkIpfgFBUUqegvZ5KVN2e7WZLfQf29qxauPgTc8ZgbeIHRNcEEwqW7XRTsYaJcWYkExlgWmCdUJGpGJoLko5ecpGmFMZV5yyc7RRYxrfBhJR-husYKw0U222tugh8abLAX5ZZt1LtM_V28hdwM0YDPf7iD0ibx-vGWmC3CJzpxuIlz97jF6f7hfzJ7y-cvj82w6zw3jVZ9rySeMGc4Fm4BhFNPacatl5WrBS0McMTpxagGEBsaJBiJp6WpTW2qxZWN0c8zdhu5rgNirjY8Gmka30A1RMS6wZKVIQnEUmtDFGMCpbfAbHfaKYHXoS63VX1_q0JfCNKFKzunRCemPnYegovHQGrA-gOmV7fy_Gd9NUnkI</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Malen, J.A.</creator><creator>Todreas, N.E.</creator><creator>Hejzlar, P.</creator><creator>Ferroni, P.</creator><creator>Bergles, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090801</creationdate><title>Thermal hydraulic design of a hydride-fueled inverted PWR core</title><author>Malen, J.A. ; Todreas, N.E. ; Hejzlar, P. ; Ferroni, P. ; Bergles, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a94833c44738ec3202bf4da96fb745c1f1ca6fb2dee7ae341ae1925fbcbd2d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malen, J.A.</creatorcontrib><creatorcontrib>Todreas, N.E.</creatorcontrib><creatorcontrib>Hejzlar, P.</creatorcontrib><creatorcontrib>Ferroni, P.</creatorcontrib><creatorcontrib>Bergles, A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malen, J.A.</au><au>Todreas, N.E.</au><au>Hejzlar, P.</au><au>Ferroni, P.</au><au>Bergles, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal hydraulic design of a hydride-fueled inverted PWR core</atitle><jtitle>Nuclear engineering and design</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>239</volume><issue>8</issue><spage>1471</spage><epage>1480</epage><pages>1471-1480</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U–ZrH 1.6) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U–ZrH 1.6. The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t, which is 135% of the optimally powered standard design (5080 MW t—determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2009.02.026</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2009-08, Vol.239 (8), p.1471-1480
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_34709357
source Elsevier ScienceDirect Journals Complete - AutoHoldings
title Thermal hydraulic design of a hydride-fueled inverted PWR core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20hydraulic%20design%20of%20a%20hydride-fueled%20inverted%20PWR%20core&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Malen,%20J.A.&rft.date=2009-08-01&rft.volume=239&rft.issue=8&rft.spage=1471&rft.epage=1480&rft.pages=1471-1480&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2009.02.026&rft_dat=%3Cproquest_cross%3E34709357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34709357&rft_id=info:pmid/&rft_els_id=S0029549309001502&rfr_iscdi=true