Asymptotic Performance of a Censoring Sensor Network

We consider the problem of decentralized binary detection in a sensor network where the sensors have access to side information that affects the statistics of their measurements, or reflects the quality of the available channel to a fusion center. Sensors can decide whether or not to make a measurem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2007-11, Vol.53 (11), p.4191-4209
Hauptverfasser: Wee Peng Tay, Tsitsiklis, J.N., Win, M.Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4209
container_issue 11
container_start_page 4191
container_title IEEE transactions on information theory
container_volume 53
creator Wee Peng Tay
Tsitsiklis, J.N.
Win, M.Z.
description We consider the problem of decentralized binary detection in a sensor network where the sensors have access to side information that affects the statistics of their measurements, or reflects the quality of the available channel to a fusion center. Sensors can decide whether or not to make a measurement and transmit a message to the fusion center ("censoring"), and also have a choice of the mapping from measurements to messages. We consider the case of a large number of sensors, and an asymptotic criterion involving error exponents. We study both a Neyman-Pearson and a , Bayesian formulation, characterize the optimal error exponent, and derive asymptotically optimal strategies for the case where sensor decisions are only allowed to depend on locally available information. Furthermore, we show that for the Neyman-Pearson case, global sharing of side information ("sensor cooperation") does not improve asymptotic performance, when the Type I error is constrained to be small.
doi_str_mv 10.1109/TIT.2007.907441
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34701984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4373434</ieee_id><sourcerecordid>34701984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-2d21ca0da46a5c3d5cd992bbb5ca3a8001846b85acf8d692f989960cd7983f1f3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQgIMoOKfPPvhSBH3rljSXNnkcwx-DoYLzOaRpIp1tM5MO2X9vZoeC3MPdcd8dx4fQJcETQrCYrharSYZxMRG4ACBHaEQYK1KRMzhGI4wJTwUAP0VnIaxjC4xkIwSzsGs3vetrnbwYb51vVadN4myikrnpgvN19568_lTJk-m_nP84RydWNcFcHPIYvd3freaP6fL5YTGfLVNNBe7TrMqIVrhSkCumacV0JURWliXTiiq-fwnykjOlLa9ykVnBhcixrgrBqSWWjtHtcHfj3efWhF62ddCmaVRn3DZICgUmgkMEr_-Ba7f1XfxNEsEEyYHTCE0HSHsXgjdWbnzdKr-TBMu9QhkVyr1COSiMGzeHsypo1Vgf1dThb01kGABY5K4GrjbG_I6BFhRifANZYnht</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195916483</pqid></control><display><type>article</type><title>Asymptotic Performance of a Censoring Sensor Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wee Peng Tay ; Tsitsiklis, J.N. ; Win, M.Z.</creator><creatorcontrib>Wee Peng Tay ; Tsitsiklis, J.N. ; Win, M.Z.</creatorcontrib><description>We consider the problem of decentralized binary detection in a sensor network where the sensors have access to side information that affects the statistics of their measurements, or reflects the quality of the available channel to a fusion center. Sensors can decide whether or not to make a measurement and transmit a message to the fusion center ("censoring"), and also have a choice of the mapping from measurements to messages. We consider the case of a large number of sensors, and an asymptotic criterion involving error exponents. We study both a Neyman-Pearson and a , Bayesian formulation, characterize the optimal error exponent, and derive asymptotically optimal strategies for the case where sensor decisions are only allowed to depend on locally available information. Furthermore, we show that for the Neyman-Pearson case, global sharing of side information ("sensor cooperation") does not improve asymptotic performance, when the Type I error is constrained to be small.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2007.907441</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bayesian analysis ; Bayesian methods ; Censoring ; cooperation ; Costs ; decentralized detection ; Energy efficiency ; error exponent ; Errors ; Exact sciences and technology ; Face detection ; Information theory ; Information, signal and communications theory ; Large-scale systems ; Monitoring ; Sensor fusion ; sensor networks ; Sensor phenomena and characterization ; Sensors ; Services and terminals of telecommunications ; Statistics ; Systems, networks and services of telecommunications ; Telecommunication network reliability ; Telecommunications ; Telecommunications and information theory ; Telemetry. Remote supervision. Telewarning. Remote control</subject><ispartof>IEEE transactions on information theory, 2007-11, Vol.53 (11), p.4191-4209</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-2d21ca0da46a5c3d5cd992bbb5ca3a8001846b85acf8d692f989960cd7983f1f3</citedby><cites>FETCH-LOGICAL-c390t-2d21ca0da46a5c3d5cd992bbb5ca3a8001846b85acf8d692f989960cd7983f1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4373434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4373434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19204445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wee Peng Tay</creatorcontrib><creatorcontrib>Tsitsiklis, J.N.</creatorcontrib><creatorcontrib>Win, M.Z.</creatorcontrib><title>Asymptotic Performance of a Censoring Sensor Network</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider the problem of decentralized binary detection in a sensor network where the sensors have access to side information that affects the statistics of their measurements, or reflects the quality of the available channel to a fusion center. Sensors can decide whether or not to make a measurement and transmit a message to the fusion center ("censoring"), and also have a choice of the mapping from measurements to messages. We consider the case of a large number of sensors, and an asymptotic criterion involving error exponents. We study both a Neyman-Pearson and a , Bayesian formulation, characterize the optimal error exponent, and derive asymptotically optimal strategies for the case where sensor decisions are only allowed to depend on locally available information. Furthermore, we show that for the Neyman-Pearson case, global sharing of side information ("sensor cooperation") does not improve asymptotic performance, when the Type I error is constrained to be small.</description><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Censoring</subject><subject>cooperation</subject><subject>Costs</subject><subject>decentralized detection</subject><subject>Energy efficiency</subject><subject>error exponent</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Face detection</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Large-scale systems</subject><subject>Monitoring</subject><subject>Sensor fusion</subject><subject>sensor networks</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Services and terminals of telecommunications</subject><subject>Statistics</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunication network reliability</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telemetry. Remote supervision. Telewarning. Remote control</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQgIMoOKfPPvhSBH3rljSXNnkcwx-DoYLzOaRpIp1tM5MO2X9vZoeC3MPdcd8dx4fQJcETQrCYrharSYZxMRG4ACBHaEQYK1KRMzhGI4wJTwUAP0VnIaxjC4xkIwSzsGs3vetrnbwYb51vVadN4myikrnpgvN19568_lTJk-m_nP84RydWNcFcHPIYvd3freaP6fL5YTGfLVNNBe7TrMqIVrhSkCumacV0JURWliXTiiq-fwnykjOlLa9ykVnBhcixrgrBqSWWjtHtcHfj3efWhF62ddCmaVRn3DZICgUmgkMEr_-Ba7f1XfxNEsEEyYHTCE0HSHsXgjdWbnzdKr-TBMu9QhkVyr1COSiMGzeHsypo1Vgf1dThb01kGABY5K4GrjbG_I6BFhRifANZYnht</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Wee Peng Tay</creator><creator>Tsitsiklis, J.N.</creator><creator>Win, M.Z.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071101</creationdate><title>Asymptotic Performance of a Censoring Sensor Network</title><author>Wee Peng Tay ; Tsitsiklis, J.N. ; Win, M.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-2d21ca0da46a5c3d5cd992bbb5ca3a8001846b85acf8d692f989960cd7983f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Censoring</topic><topic>cooperation</topic><topic>Costs</topic><topic>decentralized detection</topic><topic>Energy efficiency</topic><topic>error exponent</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Face detection</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Large-scale systems</topic><topic>Monitoring</topic><topic>Sensor fusion</topic><topic>sensor networks</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Services and terminals of telecommunications</topic><topic>Statistics</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunication network reliability</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telemetry. Remote supervision. Telewarning. Remote control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wee Peng Tay</creatorcontrib><creatorcontrib>Tsitsiklis, J.N.</creatorcontrib><creatorcontrib>Win, M.Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wee Peng Tay</au><au>Tsitsiklis, J.N.</au><au>Win, M.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Performance of a Censoring Sensor Network</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>53</volume><issue>11</issue><spage>4191</spage><epage>4209</epage><pages>4191-4209</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider the problem of decentralized binary detection in a sensor network where the sensors have access to side information that affects the statistics of their measurements, or reflects the quality of the available channel to a fusion center. Sensors can decide whether or not to make a measurement and transmit a message to the fusion center ("censoring"), and also have a choice of the mapping from measurements to messages. We consider the case of a large number of sensors, and an asymptotic criterion involving error exponents. We study both a Neyman-Pearson and a , Bayesian formulation, characterize the optimal error exponent, and derive asymptotically optimal strategies for the case where sensor decisions are only allowed to depend on locally available information. Furthermore, we show that for the Neyman-Pearson case, global sharing of side information ("sensor cooperation") does not improve asymptotic performance, when the Type I error is constrained to be small.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2007.907441</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2007-11, Vol.53 (11), p.4191-4209
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_34701984
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bayesian analysis
Bayesian methods
Censoring
cooperation
Costs
decentralized detection
Energy efficiency
error exponent
Errors
Exact sciences and technology
Face detection
Information theory
Information, signal and communications theory
Large-scale systems
Monitoring
Sensor fusion
sensor networks
Sensor phenomena and characterization
Sensors
Services and terminals of telecommunications
Statistics
Systems, networks and services of telecommunications
Telecommunication network reliability
Telecommunications
Telecommunications and information theory
Telemetry. Remote supervision. Telewarning. Remote control
title Asymptotic Performance of a Censoring Sensor Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Performance%20of%20a%20Censoring%20Sensor%20Network&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wee%20Peng%20Tay&rft.date=2007-11-01&rft.volume=53&rft.issue=11&rft.spage=4191&rft.epage=4209&rft.pages=4191-4209&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2007.907441&rft_dat=%3Cproquest_RIE%3E34701984%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195916483&rft_id=info:pmid/&rft_ieee_id=4373434&rfr_iscdi=true