Sided and Symmetrized Bregman Centroids
In this paper, we generalize the notions of centroids (and barycenters) to the broad class of information-theoretic distortion measures called Bregman divergences. Bregman divergences form a rich and versatile family of distances that unifies quadratic Euclidean distances with various well-known sta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2009-06, Vol.55 (6), p.2882-2904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we generalize the notions of centroids (and barycenters) to the broad class of information-theoretic distortion measures called Bregman divergences. Bregman divergences form a rich and versatile family of distances that unifies quadratic Euclidean distances with various well-known statistical entropic measures. Since besides the squared Euclidean distance, Bregman divergences are asymmetric, we consider the left-sided and right-sided centroids and the symmetrized centroids as minimizers of average Bregman distortions. We prove that all three centroids are unique and give closed-form solutions for the sided centroids that are generalized means. Furthermore, we design a provably fast and efficient arbitrary close approximation algorithm for the symmetrized centroid based on its exact geometric characterization. The geometric approximation algorithm requires only to walk on a geodesic linking the two left/right-sided centroids. We report on our implementation for computing entropic centers of image histogram clusters and entropic centers of multivariate normal distributions that are useful operations for processing multimedia information and retrieval. These experiments illustrate that our generic methods compare favorably with former limited ad hoc methods. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2009.2018176 |