Use of the attainable region analysis to optimize particle breakage in a ball mill

Particle size reduction is one of the most widely encountered, yet least energy efficient, processes. Therefore, potentially significant energy and cost savings exist with even the slightest increase in milling efficiency. Often one would like to mill particles to a certain size, and no smaller, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2009-09, Vol.64 (17), p.3766-3777
Hauptverfasser: Metzger, Matthew J., Glasser, David, Hausberger, Brendon, Hildebrandt, Diane, Glasser, Benjamin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3777
container_issue 17
container_start_page 3766
container_title Chemical engineering science
container_volume 64
creator Metzger, Matthew J.
Glasser, David
Hausberger, Brendon
Hildebrandt, Diane
Glasser, Benjamin J.
description Particle size reduction is one of the most widely encountered, yet least energy efficient, processes. Therefore, potentially significant energy and cost savings exist with even the slightest increase in milling efficiency. Often one would like to mill particles to a certain size, and no smaller, while minimizing energy use and milling time. We use the attainable region (AR) analysis to optimize the comminution of silica sand particles in a bench top laboratory ball mill. When the mill is loaded with a large number of grinding media ( J=volume of media/mill volume=10.7%), the breakage profiles are indistinguishable over all rotation rates investigated. However, operation at lower grinding media fill level ( J=1.5%) reveals separation between the grinding profiles for different rotation rates, suggesting more efficient breakage occurs at a lower grinding media fill level for a given rotation rate. Our results show that operation at multiple speeds, fast ( φ c = rotation rate / centrifuging rotation rate = 0.37 ) at first and then slower ( φ c = 0.03 ) , takes advantage of the initially overlapping grinding profiles and produces a similar particle size distribution with a decreased amount of processing time—less than half the time required for the single rotation rate milling. A natural extension of this idea is continuous milling, where the first mill can operate at a higher energy input for a shorter amount of time and the second mill can operate at a lower energy input for a longer amount of time.
doi_str_mv 10.1016/j.ces.2009.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34692955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250909003340</els_id><sourcerecordid>20772833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-6a4f90f33392cc79724f55042e960534a0bfbadd85eae40dc7efeb04c7ae785c3</originalsourceid><addsrcrecordid>eNqFkEFLHTEQx0Npoa-vfgBvudjbrpNs8naDJ5FWBUGQeg6z2YnNa97uM4kF--kbeeKxnoZhfv-Z4cfYsYBWgNicbltHuZUApgXdgpAf2EoMfdcoBfojW0GdNFKD-cy-5Lytbd8LWLG7-0x88bz8Io6lYJhxjMQTPYRl5jhjfM4h87LwZV_CLvwlvsdUgqvQmAh_4wPxUEk-Yox8F2L8yj55jJmOXuua3f_4_vPiqrm5vby-OL9pnDKyNBtU3oDvus5I53rTS-W1BiXJbEB3CmH0I07ToAlJweR68jSCcj1SP2jXrdm3w959Wh6fKBe7C9lRjDjT8pRtpzZGGq3fBWV1IYf6yJqJA-jSknMib_cp7DA9WwH2RbPd2qrZvmi2oG3VXDMnr8sxO4w-4exCfgtKMQgDSlXu7MBRVfInULLZBZodTSGRK3Zawn-u_AMVNJJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20772833</pqid></control><display><type>article</type><title>Use of the attainable region analysis to optimize particle breakage in a ball mill</title><source>Access via ScienceDirect (Elsevier)</source><creator>Metzger, Matthew J. ; Glasser, David ; Hausberger, Brendon ; Hildebrandt, Diane ; Glasser, Benjamin J.</creator><creatorcontrib>Metzger, Matthew J. ; Glasser, David ; Hausberger, Brendon ; Hildebrandt, Diane ; Glasser, Benjamin J.</creatorcontrib><description>Particle size reduction is one of the most widely encountered, yet least energy efficient, processes. Therefore, potentially significant energy and cost savings exist with even the slightest increase in milling efficiency. Often one would like to mill particles to a certain size, and no smaller, while minimizing energy use and milling time. We use the attainable region (AR) analysis to optimize the comminution of silica sand particles in a bench top laboratory ball mill. When the mill is loaded with a large number of grinding media ( J=volume of media/mill volume=10.7%), the breakage profiles are indistinguishable over all rotation rates investigated. However, operation at lower grinding media fill level ( J=1.5%) reveals separation between the grinding profiles for different rotation rates, suggesting more efficient breakage occurs at a lower grinding media fill level for a given rotation rate. Our results show that operation at multiple speeds, fast ( φ c = rotation rate / centrifuging rotation rate = 0.37 ) at first and then slower ( φ c = 0.03 ) , takes advantage of the initially overlapping grinding profiles and produces a similar particle size distribution with a decreased amount of processing time—less than half the time required for the single rotation rate milling. A natural extension of this idea is continuous milling, where the first mill can operate at a higher energy input for a shorter amount of time and the second mill can operate at a lower energy input for a longer amount of time.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2009.05.012</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Attainable region (AR) ; Ball filling ; Centrifugation, cyclones ; Chemical engineering ; Comminution ; Exact sciences and technology ; Grinding ; Liquid-liquid and fluid-solid mechanical separations ; Mill rotational speed ; Optimization ; Particulate processes ; Solid-solid systems</subject><ispartof>Chemical engineering science, 2009-09, Vol.64 (17), p.3766-3777</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-6a4f90f33392cc79724f55042e960534a0bfbadd85eae40dc7efeb04c7ae785c3</citedby><cites>FETCH-LOGICAL-c492t-6a4f90f33392cc79724f55042e960534a0bfbadd85eae40dc7efeb04c7ae785c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2009.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21819044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Metzger, Matthew J.</creatorcontrib><creatorcontrib>Glasser, David</creatorcontrib><creatorcontrib>Hausberger, Brendon</creatorcontrib><creatorcontrib>Hildebrandt, Diane</creatorcontrib><creatorcontrib>Glasser, Benjamin J.</creatorcontrib><title>Use of the attainable region analysis to optimize particle breakage in a ball mill</title><title>Chemical engineering science</title><description>Particle size reduction is one of the most widely encountered, yet least energy efficient, processes. Therefore, potentially significant energy and cost savings exist with even the slightest increase in milling efficiency. Often one would like to mill particles to a certain size, and no smaller, while minimizing energy use and milling time. We use the attainable region (AR) analysis to optimize the comminution of silica sand particles in a bench top laboratory ball mill. When the mill is loaded with a large number of grinding media ( J=volume of media/mill volume=10.7%), the breakage profiles are indistinguishable over all rotation rates investigated. However, operation at lower grinding media fill level ( J=1.5%) reveals separation between the grinding profiles for different rotation rates, suggesting more efficient breakage occurs at a lower grinding media fill level for a given rotation rate. Our results show that operation at multiple speeds, fast ( φ c = rotation rate / centrifuging rotation rate = 0.37 ) at first and then slower ( φ c = 0.03 ) , takes advantage of the initially overlapping grinding profiles and produces a similar particle size distribution with a decreased amount of processing time—less than half the time required for the single rotation rate milling. A natural extension of this idea is continuous milling, where the first mill can operate at a higher energy input for a shorter amount of time and the second mill can operate at a lower energy input for a longer amount of time.</description><subject>Applied sciences</subject><subject>Attainable region (AR)</subject><subject>Ball filling</subject><subject>Centrifugation, cyclones</subject><subject>Chemical engineering</subject><subject>Comminution</subject><subject>Exact sciences and technology</subject><subject>Grinding</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Mill rotational speed</subject><subject>Optimization</subject><subject>Particulate processes</subject><subject>Solid-solid systems</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLHTEQx0Npoa-vfgBvudjbrpNs8naDJ5FWBUGQeg6z2YnNa97uM4kF--kbeeKxnoZhfv-Z4cfYsYBWgNicbltHuZUApgXdgpAf2EoMfdcoBfojW0GdNFKD-cy-5Lytbd8LWLG7-0x88bz8Io6lYJhxjMQTPYRl5jhjfM4h87LwZV_CLvwlvsdUgqvQmAh_4wPxUEk-Yox8F2L8yj55jJmOXuua3f_4_vPiqrm5vby-OL9pnDKyNBtU3oDvus5I53rTS-W1BiXJbEB3CmH0I07ToAlJweR68jSCcj1SP2jXrdm3w959Wh6fKBe7C9lRjDjT8pRtpzZGGq3fBWV1IYf6yJqJA-jSknMib_cp7DA9WwH2RbPd2qrZvmi2oG3VXDMnr8sxO4w-4exCfgtKMQgDSlXu7MBRVfInULLZBZodTSGRK3Zawn-u_AMVNJJI</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Metzger, Matthew J.</creator><creator>Glasser, David</creator><creator>Hausberger, Brendon</creator><creator>Hildebrandt, Diane</creator><creator>Glasser, Benjamin J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090901</creationdate><title>Use of the attainable region analysis to optimize particle breakage in a ball mill</title><author>Metzger, Matthew J. ; Glasser, David ; Hausberger, Brendon ; Hildebrandt, Diane ; Glasser, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-6a4f90f33392cc79724f55042e960534a0bfbadd85eae40dc7efeb04c7ae785c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Attainable region (AR)</topic><topic>Ball filling</topic><topic>Centrifugation, cyclones</topic><topic>Chemical engineering</topic><topic>Comminution</topic><topic>Exact sciences and technology</topic><topic>Grinding</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Mill rotational speed</topic><topic>Optimization</topic><topic>Particulate processes</topic><topic>Solid-solid systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzger, Matthew J.</creatorcontrib><creatorcontrib>Glasser, David</creatorcontrib><creatorcontrib>Hausberger, Brendon</creatorcontrib><creatorcontrib>Hildebrandt, Diane</creatorcontrib><creatorcontrib>Glasser, Benjamin J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzger, Matthew J.</au><au>Glasser, David</au><au>Hausberger, Brendon</au><au>Hildebrandt, Diane</au><au>Glasser, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the attainable region analysis to optimize particle breakage in a ball mill</atitle><jtitle>Chemical engineering science</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>64</volume><issue>17</issue><spage>3766</spage><epage>3777</epage><pages>3766-3777</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Particle size reduction is one of the most widely encountered, yet least energy efficient, processes. Therefore, potentially significant energy and cost savings exist with even the slightest increase in milling efficiency. Often one would like to mill particles to a certain size, and no smaller, while minimizing energy use and milling time. We use the attainable region (AR) analysis to optimize the comminution of silica sand particles in a bench top laboratory ball mill. When the mill is loaded with a large number of grinding media ( J=volume of media/mill volume=10.7%), the breakage profiles are indistinguishable over all rotation rates investigated. However, operation at lower grinding media fill level ( J=1.5%) reveals separation between the grinding profiles for different rotation rates, suggesting more efficient breakage occurs at a lower grinding media fill level for a given rotation rate. Our results show that operation at multiple speeds, fast ( φ c = rotation rate / centrifuging rotation rate = 0.37 ) at first and then slower ( φ c = 0.03 ) , takes advantage of the initially overlapping grinding profiles and produces a similar particle size distribution with a decreased amount of processing time—less than half the time required for the single rotation rate milling. A natural extension of this idea is continuous milling, where the first mill can operate at a higher energy input for a shorter amount of time and the second mill can operate at a lower energy input for a longer amount of time.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2009.05.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2009-09, Vol.64 (17), p.3766-3777
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_34692955
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Attainable region (AR)
Ball filling
Centrifugation, cyclones
Chemical engineering
Comminution
Exact sciences and technology
Grinding
Liquid-liquid and fluid-solid mechanical separations
Mill rotational speed
Optimization
Particulate processes
Solid-solid systems
title Use of the attainable region analysis to optimize particle breakage in a ball mill
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20attainable%20region%20analysis%20to%20optimize%20particle%20breakage%20in%20a%20ball%20mill&rft.jtitle=Chemical%20engineering%20science&rft.au=Metzger,%20Matthew%20J.&rft.date=2009-09-01&rft.volume=64&rft.issue=17&rft.spage=3766&rft.epage=3777&rft.pages=3766-3777&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2009.05.012&rft_dat=%3Cproquest_cross%3E20772833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20772833&rft_id=info:pmid/&rft_els_id=S0009250909003340&rfr_iscdi=true