A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals

Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2009-08, Vol.23 (6), p.2049-2058
Hauptverfasser: Das, Niva, Routray, Aurobinda, Dash, Pradipta Kishor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2058
container_issue 6
container_start_page 2049
container_title Mechanical systems and signal processing
container_volume 23
creator Das, Niva
Routray, Aurobinda
Dash, Pradipta Kishor
description Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on H ∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying H ∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the H ∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the H ∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.
doi_str_mv 10.1016/j.ymssp.2008.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34676755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327008003130</els_id><sourcerecordid>34676755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-dae08270a4e6a1b301694609e8907be880f971109a85bc64f9eaf255728af2753</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAjZesUuw8-PYCxZVBRSpEhtYW447aV05cbDTQm_AKTgcJ8GhrFm9xcw3mvchdE1JSgllt9v00IbQpxkhPKU0jThBE0oES2hG2SmaEM55kmcVOUcXIWwJIaIgbIIOM-xdvQsDXuDvzy9sQfnOdGus-t47pTd4cLi2plvhAL3yajCuw67Bwbp3e8CDaSHZK38YM635GHYexrHSLh41GoMFPXjXgt6ozmhlcTDrTtlwic6aCLj64xS9Pty_zBfJ8vnxaT5bJpoKMSQrBYTHv1UBTNE6j7qiYEQAF6SqgXPSiIpGVcXLWrOiEaCarCyrjEdWZT5FN8e70edtB2GQrQkarFUdxB9lXrCKVeW4mB8XtXcheGhk700b1SQlcqxZbuVvzXKsWVIqI2Lq7piC6LA34GXQBjoNK-OjuVw582_-B5QHinM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34676755</pqid></control><display><type>article</type><title>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</title><source>Elsevier ScienceDirect Journals</source><creator>Das, Niva ; Routray, Aurobinda ; Dash, Pradipta Kishor</creator><creatorcontrib>Das, Niva ; Routray, Aurobinda ; Dash, Pradipta Kishor</creatorcontrib><description>Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on H ∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying H ∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the H ∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the H ∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2008.11.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustic signature ; BSS ; Electromechanical signal ; H∞ learning</subject><ispartof>Mechanical systems and signal processing, 2009-08, Vol.23 (6), p.2049-2058</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c199t-dae08270a4e6a1b301694609e8907be880f971109a85bc64f9eaf255728af2753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327008003130$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Das, Niva</creatorcontrib><creatorcontrib>Routray, Aurobinda</creatorcontrib><creatorcontrib>Dash, Pradipta Kishor</creatorcontrib><title>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</title><title>Mechanical systems and signal processing</title><description>Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on H ∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying H ∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the H ∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the H ∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.</description><subject>Acoustic signature</subject><subject>BSS</subject><subject>Electromechanical signal</subject><subject>H∞ learning</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAjZesUuw8-PYCxZVBRSpEhtYW447aV05cbDTQm_AKTgcJ8GhrFm9xcw3mvchdE1JSgllt9v00IbQpxkhPKU0jThBE0oES2hG2SmaEM55kmcVOUcXIWwJIaIgbIIOM-xdvQsDXuDvzy9sQfnOdGus-t47pTd4cLi2plvhAL3yajCuw67Bwbp3e8CDaSHZK38YM635GHYexrHSLh41GoMFPXjXgt6ozmhlcTDrTtlwic6aCLj64xS9Pty_zBfJ8vnxaT5bJpoKMSQrBYTHv1UBTNE6j7qiYEQAF6SqgXPSiIpGVcXLWrOiEaCarCyrjEdWZT5FN8e70edtB2GQrQkarFUdxB9lXrCKVeW4mB8XtXcheGhk700b1SQlcqxZbuVvzXKsWVIqI2Lq7piC6LA34GXQBjoNK-OjuVw582_-B5QHinM</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Das, Niva</creator><creator>Routray, Aurobinda</creator><creator>Dash, Pradipta Kishor</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200908</creationdate><title>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</title><author>Das, Niva ; Routray, Aurobinda ; Dash, Pradipta Kishor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-dae08270a4e6a1b301694609e8907be880f971109a85bc64f9eaf255728af2753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signature</topic><topic>BSS</topic><topic>Electromechanical signal</topic><topic>H∞ learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Niva</creatorcontrib><creatorcontrib>Routray, Aurobinda</creatorcontrib><creatorcontrib>Dash, Pradipta Kishor</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Niva</au><au>Routray, Aurobinda</au><au>Dash, Pradipta Kishor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2009-08</date><risdate>2009</risdate><volume>23</volume><issue>6</issue><spage>2049</spage><epage>2058</epage><pages>2049-2058</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on H ∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying H ∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the H ∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the H ∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2008.11.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2009-08, Vol.23 (6), p.2049-2058
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_34676755
source Elsevier ScienceDirect Journals
subjects Acoustic signature
BSS
Electromechanical signal
H∞ learning
title A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20H%20%E2%88%9E%20learning%20approach%20to%20blind%20separation%20of%20slowly%20time-varying%20mixture%20of%20acoustic%20electromechanical%20signals&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Das,%20Niva&rft.date=2009-08&rft.volume=23&rft.issue=6&rft.spage=2049&rft.epage=2058&rft.pages=2049-2058&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2008.11.008&rft_dat=%3Cproquest_cross%3E34676755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34676755&rft_id=info:pmid/&rft_els_id=S0888327008003130&rfr_iscdi=true