A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals
Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2009-08, Vol.23 (6), p.2049-2058 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2058 |
---|---|
container_issue | 6 |
container_start_page | 2049 |
container_title | Mechanical systems and signal processing |
container_volume | 23 |
creator | Das, Niva Routray, Aurobinda Dash, Pradipta Kishor |
description | Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on
H
∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying
H
∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the
H
∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the
H
∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully. |
doi_str_mv | 10.1016/j.ymssp.2008.11.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34676755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327008003130</els_id><sourcerecordid>34676755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-dae08270a4e6a1b301694609e8907be880f971109a85bc64f9eaf255728af2753</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAjZesUuw8-PYCxZVBRSpEhtYW447aV05cbDTQm_AKTgcJ8GhrFm9xcw3mvchdE1JSgllt9v00IbQpxkhPKU0jThBE0oES2hG2SmaEM55kmcVOUcXIWwJIaIgbIIOM-xdvQsDXuDvzy9sQfnOdGus-t47pTd4cLi2plvhAL3yajCuw67Bwbp3e8CDaSHZK38YM635GHYexrHSLh41GoMFPXjXgt6ozmhlcTDrTtlwic6aCLj64xS9Pty_zBfJ8vnxaT5bJpoKMSQrBYTHv1UBTNE6j7qiYEQAF6SqgXPSiIpGVcXLWrOiEaCarCyrjEdWZT5FN8e70edtB2GQrQkarFUdxB9lXrCKVeW4mB8XtXcheGhk700b1SQlcqxZbuVvzXKsWVIqI2Lq7piC6LA34GXQBjoNK-OjuVw582_-B5QHinM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34676755</pqid></control><display><type>article</type><title>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</title><source>Elsevier ScienceDirect Journals</source><creator>Das, Niva ; Routray, Aurobinda ; Dash, Pradipta Kishor</creator><creatorcontrib>Das, Niva ; Routray, Aurobinda ; Dash, Pradipta Kishor</creatorcontrib><description>Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on
H
∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying
H
∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the
H
∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the
H
∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2008.11.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustic signature ; BSS ; Electromechanical signal ; H∞ learning</subject><ispartof>Mechanical systems and signal processing, 2009-08, Vol.23 (6), p.2049-2058</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c199t-dae08270a4e6a1b301694609e8907be880f971109a85bc64f9eaf255728af2753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327008003130$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Das, Niva</creatorcontrib><creatorcontrib>Routray, Aurobinda</creatorcontrib><creatorcontrib>Dash, Pradipta Kishor</creatorcontrib><title>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</title><title>Mechanical systems and signal processing</title><description>Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on
H
∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying
H
∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the
H
∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the
H
∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.</description><subject>Acoustic signature</subject><subject>BSS</subject><subject>Electromechanical signal</subject><subject>H∞ learning</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAjZesUuw8-PYCxZVBRSpEhtYW447aV05cbDTQm_AKTgcJ8GhrFm9xcw3mvchdE1JSgllt9v00IbQpxkhPKU0jThBE0oES2hG2SmaEM55kmcVOUcXIWwJIaIgbIIOM-xdvQsDXuDvzy9sQfnOdGus-t47pTd4cLi2plvhAL3yajCuw67Bwbp3e8CDaSHZK38YM635GHYexrHSLh41GoMFPXjXgt6ozmhlcTDrTtlwic6aCLj64xS9Pty_zBfJ8vnxaT5bJpoKMSQrBYTHv1UBTNE6j7qiYEQAF6SqgXPSiIpGVcXLWrOiEaCarCyrjEdWZT5FN8e70edtB2GQrQkarFUdxB9lXrCKVeW4mB8XtXcheGhk700b1SQlcqxZbuVvzXKsWVIqI2Lq7piC6LA34GXQBjoNK-OjuVw582_-B5QHinM</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Das, Niva</creator><creator>Routray, Aurobinda</creator><creator>Dash, Pradipta Kishor</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200908</creationdate><title>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</title><author>Das, Niva ; Routray, Aurobinda ; Dash, Pradipta Kishor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-dae08270a4e6a1b301694609e8907be880f971109a85bc64f9eaf255728af2753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signature</topic><topic>BSS</topic><topic>Electromechanical signal</topic><topic>H∞ learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Niva</creatorcontrib><creatorcontrib>Routray, Aurobinda</creatorcontrib><creatorcontrib>Dash, Pradipta Kishor</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Niva</au><au>Routray, Aurobinda</au><au>Dash, Pradipta Kishor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2009-08</date><risdate>2009</risdate><volume>23</volume><issue>6</issue><spage>2049</spage><epage>2058</epage><pages>2049-2058</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Although many techniques have been developed for solving the blind source separation (BSS) problem, some issues related to robustness of BSS algorithms are yet to be addressed. Most of the BSS algorithms developed assume the mixing system to be stationary. In this paper, we present a robust approach based on
H
∞ learning to address the instantaneous BSS problem in a non-stationary mixing environment. The motivation behind applying
H
∞ filter is that these are robust to errors arising out of model uncertainties, parameter variations and additive noise. Acoustic electromechanical signals have been considered for simulation purpose. Simulation results demonstrate that the
H
∞ filter performs superior to Kalman filter and VS-NGA algorithm. To ensure practicability of the proposed approach, the
H
∞ learning algorithm has been implemented and tested on Texas Instrument's TMS320C6713 floating point DSP platform successfully.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2008.11.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2009-08, Vol.23 (6), p.2049-2058 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_miscellaneous_34676755 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic signature BSS Electromechanical signal H∞ learning |
title | A robust H ∞ learning approach to blind separation of slowly time-varying mixture of acoustic electromechanical signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20H%20%E2%88%9E%20learning%20approach%20to%20blind%20separation%20of%20slowly%20time-varying%20mixture%20of%20acoustic%20electromechanical%20signals&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Das,%20Niva&rft.date=2009-08&rft.volume=23&rft.issue=6&rft.spage=2049&rft.epage=2058&rft.pages=2049-2058&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2008.11.008&rft_dat=%3Cproquest_cross%3E34676755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34676755&rft_id=info:pmid/&rft_els_id=S0888327008003130&rfr_iscdi=true |