A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops

A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2008-10, Vol.227 (20), p.8807-8819
Hauptverfasser: Janssen, P.J.A., Anderson, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8819
container_issue 20
container_start_page 8807
container_title Journal of computational physics
container_volume 227
creator Janssen, P.J.A.
Anderson, P.D.
description A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.
doi_str_mv 10.1016/j.jcp.2008.06.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34659287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199910800346X</els_id><sourcerecordid>34659287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6cb3fc768e129e2907c01128bb2d1b9df17749076a20ac0c78e81494b071f7bf3</originalsourceid><addsrcrecordid>eNp9kM1uGyEURlHVSHXTPEB3bNrdTC54zI-6sqymiRQpm3SNGOZOijWGKWBbfvvgOuoyK67Q-b4Lh5CvDFoGTNxu262bWw6gWhAtcPmBLBhoaLhk4iNZAHDWaK3ZJ_I55y1UcNWpBQlr2sd9GGw6NT4UfEl2ors44ETHmOiQ4kwHrOPOFh8D7bEcEQMtx0hnW-GpkvNkC2Z69OUPDTE0--ALPfjsYvblRNM5-q8qfyFXo50y3ryd1-T33c_nzX3z-PTrYbN-bNxypUojXL8cnRQKGdfINUgHjHHV93xgvR5GJmVXb4XlYB04qVCxTnc9SDbKflxek--X3jnFv3vMxezqc3CabMC4z2bZiZXmSlaQXUCXYs4JRzMnv6s2DANzNmu2ppo1Z7MGhKlma-bbW7nNzk5jssH5_D_IQYIS0FXux4XD-tODx2Sy8xgcDj6hK2aI_p0tr_tQj9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34659287</pqid></control><display><type>article</type><title>A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Janssen, P.J.A. ; Anderson, P.D.</creator><creatorcontrib>Janssen, P.J.A. ; Anderson, P.D.</creatorcontrib><description>A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.06.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Boundary-integral method ; Computational techniques ; Confinements ; Exact sciences and technology ; Mathematical methods in physics ; Physics ; Viscous drops</subject><ispartof>Journal of computational physics, 2008-10, Vol.227 (20), p.8807-8819</ispartof><rights>2008 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-6cb3fc768e129e2907c01128bb2d1b9df17749076a20ac0c78e81494b071f7bf3</citedby><cites>FETCH-LOGICAL-c358t-6cb3fc768e129e2907c01128bb2d1b9df17749076a20ac0c78e81494b071f7bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2008.06.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20708604$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Janssen, P.J.A.</creatorcontrib><creatorcontrib>Anderson, P.D.</creatorcontrib><title>A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops</title><title>Journal of computational physics</title><description>A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.</description><subject>Boundary-integral method</subject><subject>Computational techniques</subject><subject>Confinements</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Viscous drops</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uGyEURlHVSHXTPEB3bNrdTC54zI-6sqymiRQpm3SNGOZOijWGKWBbfvvgOuoyK67Q-b4Lh5CvDFoGTNxu262bWw6gWhAtcPmBLBhoaLhk4iNZAHDWaK3ZJ_I55y1UcNWpBQlr2sd9GGw6NT4UfEl2ors44ETHmOiQ4kwHrOPOFh8D7bEcEQMtx0hnW-GpkvNkC2Z69OUPDTE0--ALPfjsYvblRNM5-q8qfyFXo50y3ryd1-T33c_nzX3z-PTrYbN-bNxypUojXL8cnRQKGdfINUgHjHHV93xgvR5GJmVXb4XlYB04qVCxTnc9SDbKflxek--X3jnFv3vMxezqc3CabMC4z2bZiZXmSlaQXUCXYs4JRzMnv6s2DANzNmu2ppo1Z7MGhKlma-bbW7nNzk5jssH5_D_IQYIS0FXux4XD-tODx2Sy8xgcDj6hK2aI_p0tr_tQj9U</recordid><startdate>20081020</startdate><enddate>20081020</enddate><creator>Janssen, P.J.A.</creator><creator>Anderson, P.D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081020</creationdate><title>A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops</title><author>Janssen, P.J.A. ; Anderson, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6cb3fc768e129e2907c01128bb2d1b9df17749076a20ac0c78e81494b071f7bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boundary-integral method</topic><topic>Computational techniques</topic><topic>Confinements</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Viscous drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssen, P.J.A.</creatorcontrib><creatorcontrib>Anderson, P.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssen, P.J.A.</au><au>Anderson, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops</atitle><jtitle>Journal of computational physics</jtitle><date>2008-10-20</date><risdate>2008</risdate><volume>227</volume><issue>20</issue><spage>8807</spage><epage>8819</epage><pages>8807-8819</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.06.027</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2008-10, Vol.227 (20), p.8807-8819
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_34659287
source ScienceDirect Journals (5 years ago - present)
subjects Boundary-integral method
Computational techniques
Confinements
Exact sciences and technology
Mathematical methods in physics
Physics
Viscous drops
title A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20boundary-integral%20model%20for%20drop%20deformation%20between%20two%20parallel%20plates%20with%20non-unit%20viscosity%20ratio%20drops&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Janssen,%20P.J.A.&rft.date=2008-10-20&rft.volume=227&rft.issue=20&rft.spage=8807&rft.epage=8819&rft.pages=8807-8819&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2008.06.027&rft_dat=%3Cproquest_cross%3E34659287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34659287&rft_id=info:pmid/&rft_els_id=S002199910800346X&rfr_iscdi=true