Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force
Thin film patterning by the conventional lithographic technique requires a number of steps including the deposition, development, and removal of the photoresist layer. Here we demonstrate that metal thin films evaporated on glass can be directly patterned by a spatially modulated pulsed Nd-YAG laser...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2009-06, Vol.20 (24), p.245301-245301 (6) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245301 (6) |
---|---|
container_issue | 24 |
container_start_page | 245301 |
container_title | Nanotechnology |
container_volume | 20 |
creator | Yoo, Hyeonggeun Shin, Hyunkwon Sim, Boyeon Kim, Sangtae Lee, Myeongkyu |
description | Thin film patterning by the conventional lithographic technique requires a number of steps including the deposition, development, and removal of the photoresist layer. Here we demonstrate that metal thin films evaporated on glass can be directly patterned by a spatially modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident from the backside of the substrate. This method utilizes a pulsed laser-induced thermo-elastic force exerted on the film which plays a role in detaching it from the substrate. High-fidelity patterns at the micrometer scale have been fabricated over a few square centimeters by a single pulse with pulse energy of 850 mJ. This is attributed to the fact that deposited metal films are polycrystalline with nano-sized grains, and thus localized etching of the material is possible with shearing along the weakly bonded grain boundary regions. We have also developed a nano-block model to simulate the laser-direct patterning of nanocrystalline thin films. Experimental results could be well described with this simulation model. The patterning process presented here provides a simple photoresist-free route to fabricate metal thin film patterns on transparent substrates. |
doi_str_mv | 10.1088/0957-4484/20/24/245301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_34658912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67295892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-3fcac24d73effa745de63db926e57a9d34b02acf06e3082f26c3aa99c343c9413</originalsourceid><addsrcrecordid>eNqNkctOHDEQRa2IKAwkv4C8YteMX-1uLxHiJSHBgqwtj10ORv3Cdi8mi3w77swIFkQKm6qyde4tqS5CJ5ScUdK2a6LqphKiFWtG1qxUUXNCv6AV5ZJWsmbtAVq9QYfoKKVnQihtGf2GDqkSsqVSrtCfBxNN10EXfoPDnUkQKxci2IwnkzPEIQy_8OjxYIbRxm3KhQ4D4B7KhPNTGLAPXZ_wZovnBAtq8DR36c0uDG625ZWfIPZjBeU3B4v9GC18R1-9KeyPfT9GP68uHy9uqrv769uL87vKCkZyxb01lgnXcPDeNKJ2ILnbKCahboxyXGwIM9YTCZy0zDNpuTFKWS64VYLyY3S6853i-DJDyroPyULXmQHGOWnZMFW3iv0X5EIWji6g3IE2jilF8HqKoTdxqynRS0R6ub5erq8Z0azUvxEV4cl-w7zpwb3L9pkUgO6AME6fN60-av7N6sl5_go3JKsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34658912</pqid></control><display><type>article</type><title>Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yoo, Hyeonggeun ; Shin, Hyunkwon ; Sim, Boyeon ; Kim, Sangtae ; Lee, Myeongkyu</creator><creatorcontrib>Yoo, Hyeonggeun ; Shin, Hyunkwon ; Sim, Boyeon ; Kim, Sangtae ; Lee, Myeongkyu</creatorcontrib><description>Thin film patterning by the conventional lithographic technique requires a number of steps including the deposition, development, and removal of the photoresist layer. Here we demonstrate that metal thin films evaporated on glass can be directly patterned by a spatially modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident from the backside of the substrate. This method utilizes a pulsed laser-induced thermo-elastic force exerted on the film which plays a role in detaching it from the substrate. High-fidelity patterns at the micrometer scale have been fabricated over a few square centimeters by a single pulse with pulse energy of 850 mJ. This is attributed to the fact that deposited metal films are polycrystalline with nano-sized grains, and thus localized etching of the material is possible with shearing along the weakly bonded grain boundary regions. We have also developed a nano-block model to simulate the laser-direct patterning of nanocrystalline thin films. Experimental results could be well described with this simulation model. The patterning process presented here provides a simple photoresist-free route to fabricate metal thin film patterns on transparent substrates.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/20/24/245301</identifier><identifier>PMID: 19468166</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Crystallization - methods ; Elastic Modulus ; Lasers ; Macromolecular Substances - chemistry ; Materials Testing ; Membranes, Artificial ; Metals - chemistry ; Metals - radiation effects ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Particle Size ; Stress, Mechanical ; Surface Properties ; Temperature</subject><ispartof>Nanotechnology, 2009-06, Vol.20 (24), p.245301-245301 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-3fcac24d73effa745de63db926e57a9d34b02acf06e3082f26c3aa99c343c9413</citedby><cites>FETCH-LOGICAL-c420t-3fcac24d73effa745de63db926e57a9d34b02acf06e3082f26c3aa99c343c9413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/20/24/245301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53808,53888</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19468166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Hyeonggeun</creatorcontrib><creatorcontrib>Shin, Hyunkwon</creatorcontrib><creatorcontrib>Sim, Boyeon</creatorcontrib><creatorcontrib>Kim, Sangtae</creatorcontrib><creatorcontrib>Lee, Myeongkyu</creatorcontrib><title>Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Thin film patterning by the conventional lithographic technique requires a number of steps including the deposition, development, and removal of the photoresist layer. Here we demonstrate that metal thin films evaporated on glass can be directly patterned by a spatially modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident from the backside of the substrate. This method utilizes a pulsed laser-induced thermo-elastic force exerted on the film which plays a role in detaching it from the substrate. High-fidelity patterns at the micrometer scale have been fabricated over a few square centimeters by a single pulse with pulse energy of 850 mJ. This is attributed to the fact that deposited metal films are polycrystalline with nano-sized grains, and thus localized etching of the material is possible with shearing along the weakly bonded grain boundary regions. We have also developed a nano-block model to simulate the laser-direct patterning of nanocrystalline thin films. Experimental results could be well described with this simulation model. The patterning process presented here provides a simple photoresist-free route to fabricate metal thin film patterns on transparent substrates.</description><subject>Crystallization - methods</subject><subject>Elastic Modulus</subject><subject>Lasers</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Metals - chemistry</subject><subject>Metals - radiation effects</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOHDEQRa2IKAwkv4C8YteMX-1uLxHiJSHBgqwtj10ORv3Cdi8mi3w77swIFkQKm6qyde4tqS5CJ5ScUdK2a6LqphKiFWtG1qxUUXNCv6AV5ZJWsmbtAVq9QYfoKKVnQihtGf2GDqkSsqVSrtCfBxNN10EXfoPDnUkQKxci2IwnkzPEIQy_8OjxYIbRxm3KhQ4D4B7KhPNTGLAPXZ_wZovnBAtq8DR36c0uDG625ZWfIPZjBeU3B4v9GC18R1-9KeyPfT9GP68uHy9uqrv769uL87vKCkZyxb01lgnXcPDeNKJ2ILnbKCahboxyXGwIM9YTCZy0zDNpuTFKWS64VYLyY3S6853i-DJDyroPyULXmQHGOWnZMFW3iv0X5EIWji6g3IE2jilF8HqKoTdxqynRS0R6ub5erq8Z0azUvxEV4cl-w7zpwb3L9pkUgO6AME6fN60-av7N6sl5_go3JKsg</recordid><startdate>20090617</startdate><enddate>20090617</enddate><creator>Yoo, Hyeonggeun</creator><creator>Shin, Hyunkwon</creator><creator>Sim, Boyeon</creator><creator>Kim, Sangtae</creator><creator>Lee, Myeongkyu</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090617</creationdate><title>Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force</title><author>Yoo, Hyeonggeun ; Shin, Hyunkwon ; Sim, Boyeon ; Kim, Sangtae ; Lee, Myeongkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-3fcac24d73effa745de63db926e57a9d34b02acf06e3082f26c3aa99c343c9413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Crystallization - methods</topic><topic>Elastic Modulus</topic><topic>Lasers</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Metals - chemistry</topic><topic>Metals - radiation effects</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Hyeonggeun</creatorcontrib><creatorcontrib>Shin, Hyunkwon</creatorcontrib><creatorcontrib>Sim, Boyeon</creatorcontrib><creatorcontrib>Kim, Sangtae</creatorcontrib><creatorcontrib>Lee, Myeongkyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Hyeonggeun</au><au>Shin, Hyunkwon</au><au>Sim, Boyeon</au><au>Kim, Sangtae</au><au>Lee, Myeongkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2009-06-17</date><risdate>2009</risdate><volume>20</volume><issue>24</issue><spage>245301</spage><epage>245301 (6)</epage><pages>245301-245301 (6)</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Thin film patterning by the conventional lithographic technique requires a number of steps including the deposition, development, and removal of the photoresist layer. Here we demonstrate that metal thin films evaporated on glass can be directly patterned by a spatially modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident from the backside of the substrate. This method utilizes a pulsed laser-induced thermo-elastic force exerted on the film which plays a role in detaching it from the substrate. High-fidelity patterns at the micrometer scale have been fabricated over a few square centimeters by a single pulse with pulse energy of 850 mJ. This is attributed to the fact that deposited metal films are polycrystalline with nano-sized grains, and thus localized etching of the material is possible with shearing along the weakly bonded grain boundary regions. We have also developed a nano-block model to simulate the laser-direct patterning of nanocrystalline thin films. Experimental results could be well described with this simulation model. The patterning process presented here provides a simple photoresist-free route to fabricate metal thin film patterns on transparent substrates.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>19468166</pmid><doi>10.1088/0957-4484/20/24/245301</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2009-06, Vol.20 (24), p.245301-245301 (6) |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_34658912 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Crystallization - methods Elastic Modulus Lasers Macromolecular Substances - chemistry Materials Testing Membranes, Artificial Metals - chemistry Metals - radiation effects Molecular Conformation Nanostructures - chemistry Nanostructures - radiation effects Nanostructures - ultrastructure Nanotechnology - methods Particle Size Stress, Mechanical Surface Properties Temperature |
title | Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelized%20laser-direct%20patterning%20of%20nanocrystalline%20metal%20thin%20films%20by%20use%20of%20a%20pulsed%20laser-induced%20thermo-elastic%20force&rft.jtitle=Nanotechnology&rft.au=Yoo,%20Hyeonggeun&rft.date=2009-06-17&rft.volume=20&rft.issue=24&rft.spage=245301&rft.epage=245301%20(6)&rft.pages=245301-245301%20(6)&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/20/24/245301&rft_dat=%3Cproquest_pubme%3E67295892%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34658912&rft_id=info:pmid/19468166&rfr_iscdi=true |