Parametric sensitivity: A case study comparison

This article presents a comparative analysis of three derivative-based parametric sensitivity approaches in multi-response regression estimation: marginal sensitivity, profile-based approach developed by [Sulieman, H., McLellan, P.J., Bacon, D.W., 2004, A Profile-based approach to parametric sensiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2009-05, Vol.53 (7), p.2640-2652
Hauptverfasser: Sulieman, H., Kucuk, I., McLellan, P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2652
container_issue 7
container_start_page 2640
container_title Computational statistics & data analysis
container_volume 53
creator Sulieman, H.
Kucuk, I.
McLellan, P.J.
description This article presents a comparative analysis of three derivative-based parametric sensitivity approaches in multi-response regression estimation: marginal sensitivity, profile-based approach developed by [Sulieman, H., McLellan, P.J., Bacon, D.W., 2004, A Profile-based approach to parametric sensitivity in multiresponse regression models, Computational Statistics & Data Analysis, 45, 721–740] and the commonly used approach of the Fourier Amplitude Sensitivity Test (FAST). We apply the classical formulation of FAST in which Fourier sine coefficients are utilized as sensitivity measures. Contrary to marginal sensitivity, profile-based and FAST approaches provide sensitivity measures that account for model nonlinearity and are pertinent to linear and nonlinear regression models. However, the primary difference between FAST and profile-based sensitivity is that traditional FAST fails to account for parameter dependencies in the model system while these dependencies are considered in the analysis procedure of profile-based sensitivity through the re-estimation of the remaining model parameters conditional on the values of the parameter of interest. An example is discussed to illustrate the comparisons by applying the three sensitivity methods to a model described by set of non-linear differential equations. Some computational aspects are also explored.
doi_str_mv 10.1016/j.csda.2009.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34657113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947309000048</els_id><sourcerecordid>34657113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-f01773ced561d17bb3b1b50d12c2fabfddc3bd7caaf90a3c161db472a64e5c273</originalsourceid><addsrcrecordid>eNp9kE2L2zAQhkVpoem2f6AnX9qbvSPJtpLSy7L0YyGwPbRnMR6NqUL8UY0TyL-v3Cx77OGVYHjeYXiUeq-h0qDb20NFErAyALsKdAVgX6iN3jpTOtuYl2qTIVfuamdfqzciBwAwtdtu1O0PTDjwkiIVwqPEJZ7jcvlU3BWEwoUsp3ApaBpmTFGm8a161eNR-N3Tf6N-ff3y8_57uX_89nB_ty-ptrCUPWjnLHFoWh206zrb6a6BoA2ZHrs-BLJdcITY7wAt6Yx1tTPY1tyQcfZGfbzundP058Sy-CEK8fGII08n8bZuG6e1zaC5gpQmkcS9n1McMF28Br-68Qe_uvGrGw_aZze5tL-WEs9Mzw1mXtER_dlbbGx-Ljn_mhZjjsuZ11FbgzdtY_zvZcjrPjwdi0J47BOOFOV5rdHGbRvbZu7zleNs7hw5eaHIY9YUE9PiwxT_d_VfHkSTqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34657113</pqid></control><display><type>article</type><title>Parametric sensitivity: A case study comparison</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Sulieman, H. ; Kucuk, I. ; McLellan, P.J.</creator><creatorcontrib>Sulieman, H. ; Kucuk, I. ; McLellan, P.J.</creatorcontrib><description>This article presents a comparative analysis of three derivative-based parametric sensitivity approaches in multi-response regression estimation: marginal sensitivity, profile-based approach developed by [Sulieman, H., McLellan, P.J., Bacon, D.W., 2004, A Profile-based approach to parametric sensitivity in multiresponse regression models, Computational Statistics &amp; Data Analysis, 45, 721–740] and the commonly used approach of the Fourier Amplitude Sensitivity Test (FAST). We apply the classical formulation of FAST in which Fourier sine coefficients are utilized as sensitivity measures. Contrary to marginal sensitivity, profile-based and FAST approaches provide sensitivity measures that account for model nonlinearity and are pertinent to linear and nonlinear regression models. However, the primary difference between FAST and profile-based sensitivity is that traditional FAST fails to account for parameter dependencies in the model system while these dependencies are considered in the analysis procedure of profile-based sensitivity through the re-estimation of the remaining model parameters conditional on the values of the parameter of interest. An example is discussed to illustrate the comparisons by applying the three sensitivity methods to a model described by set of non-linear differential equations. Some computational aspects are also explored.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2009.01.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Calculus of variations and optimal control ; Exact sciences and technology ; General topics ; Mathematical analysis ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2009-05, Vol.53 (7), p.2640-2652</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-f01773ced561d17bb3b1b50d12c2fabfddc3bd7caaf90a3c161db472a64e5c273</citedby><cites>FETCH-LOGICAL-c430t-f01773ced561d17bb3b1b50d12c2fabfddc3bd7caaf90a3c161db472a64e5c273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947309000048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21278536$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a53_3ay_3a2009_3ai_3a7_3ap_3a2640-2652.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Sulieman, H.</creatorcontrib><creatorcontrib>Kucuk, I.</creatorcontrib><creatorcontrib>McLellan, P.J.</creatorcontrib><title>Parametric sensitivity: A case study comparison</title><title>Computational statistics &amp; data analysis</title><description>This article presents a comparative analysis of three derivative-based parametric sensitivity approaches in multi-response regression estimation: marginal sensitivity, profile-based approach developed by [Sulieman, H., McLellan, P.J., Bacon, D.W., 2004, A Profile-based approach to parametric sensitivity in multiresponse regression models, Computational Statistics &amp; Data Analysis, 45, 721–740] and the commonly used approach of the Fourier Amplitude Sensitivity Test (FAST). We apply the classical formulation of FAST in which Fourier sine coefficients are utilized as sensitivity measures. Contrary to marginal sensitivity, profile-based and FAST approaches provide sensitivity measures that account for model nonlinearity and are pertinent to linear and nonlinear regression models. However, the primary difference between FAST and profile-based sensitivity is that traditional FAST fails to account for parameter dependencies in the model system while these dependencies are considered in the analysis procedure of profile-based sensitivity through the re-estimation of the remaining model parameters conditional on the values of the parameter of interest. An example is discussed to illustrate the comparisons by applying the three sensitivity methods to a model described by set of non-linear differential equations. Some computational aspects are also explored.</description><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE2L2zAQhkVpoem2f6AnX9qbvSPJtpLSy7L0YyGwPbRnMR6NqUL8UY0TyL-v3Cx77OGVYHjeYXiUeq-h0qDb20NFErAyALsKdAVgX6iN3jpTOtuYl2qTIVfuamdfqzciBwAwtdtu1O0PTDjwkiIVwqPEJZ7jcvlU3BWEwoUsp3ApaBpmTFGm8a161eNR-N3Tf6N-ff3y8_57uX_89nB_ty-ptrCUPWjnLHFoWh206zrb6a6BoA2ZHrs-BLJdcITY7wAt6Yx1tTPY1tyQcfZGfbzundP058Sy-CEK8fGII08n8bZuG6e1zaC5gpQmkcS9n1McMF28Br-68Qe_uvGrGw_aZze5tL-WEs9Mzw1mXtER_dlbbGx-Ljn_mhZjjsuZ11FbgzdtY_zvZcjrPjwdi0J47BOOFOV5rdHGbRvbZu7zleNs7hw5eaHIY9YUE9PiwxT_d_VfHkSTqQ</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Sulieman, H.</creator><creator>Kucuk, I.</creator><creator>McLellan, P.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090515</creationdate><title>Parametric sensitivity: A case study comparison</title><author>Sulieman, H. ; Kucuk, I. ; McLellan, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-f01773ced561d17bb3b1b50d12c2fabfddc3bd7caaf90a3c161db472a64e5c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulieman, H.</creatorcontrib><creatorcontrib>Kucuk, I.</creatorcontrib><creatorcontrib>McLellan, P.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulieman, H.</au><au>Kucuk, I.</au><au>McLellan, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric sensitivity: A case study comparison</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2009-05-15</date><risdate>2009</risdate><volume>53</volume><issue>7</issue><spage>2640</spage><epage>2652</epage><pages>2640-2652</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>This article presents a comparative analysis of three derivative-based parametric sensitivity approaches in multi-response regression estimation: marginal sensitivity, profile-based approach developed by [Sulieman, H., McLellan, P.J., Bacon, D.W., 2004, A Profile-based approach to parametric sensitivity in multiresponse regression models, Computational Statistics &amp; Data Analysis, 45, 721–740] and the commonly used approach of the Fourier Amplitude Sensitivity Test (FAST). We apply the classical formulation of FAST in which Fourier sine coefficients are utilized as sensitivity measures. Contrary to marginal sensitivity, profile-based and FAST approaches provide sensitivity measures that account for model nonlinearity and are pertinent to linear and nonlinear regression models. However, the primary difference between FAST and profile-based sensitivity is that traditional FAST fails to account for parameter dependencies in the model system while these dependencies are considered in the analysis procedure of profile-based sensitivity through the re-estimation of the remaining model parameters conditional on the values of the parameter of interest. An example is discussed to illustrate the comparisons by applying the three sensitivity methods to a model described by set of non-linear differential equations. Some computational aspects are also explored.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2009.01.003</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2009-05, Vol.53 (7), p.2640-2652
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_34657113
source RePEc; Elsevier ScienceDirect Journals
subjects Calculus of variations and optimal control
Exact sciences and technology
General topics
Mathematical analysis
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Sciences and techniques of general use
Statistics
title Parametric sensitivity: A case study comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20sensitivity:%20A%20case%20study%20comparison&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Sulieman,%20H.&rft.date=2009-05-15&rft.volume=53&rft.issue=7&rft.spage=2640&rft.epage=2652&rft.pages=2640-2652&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2009.01.003&rft_dat=%3Cproquest_cross%3E34657113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34657113&rft_id=info:pmid/&rft_els_id=S0167947309000048&rfr_iscdi=true