Finite-Length Scaling for Iteratively Decoded LDPC Ensembles

We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-02, Vol.55 (2), p.473-498
Hauptverfasser: Amraoui, A., Montanari, A., Richardson, T., Urbanke, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 2
container_start_page 473
container_title IEEE transactions on information theory
container_volume 55
creator Amraoui, A.
Montanari, A.
Richardson, T.
Urbanke, R.
description We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.
doi_str_mv 10.1109/TIT.2008.2009580
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34585999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4777618</ieee_id><sourcerecordid>34585999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKd3wUsRFC-deU3S5IEXmVMHAwXnuWTpq1a6diad4H9vxoYHDxJ4IeT7_eB9jJ0CHwFwvJ5P56OMc7MZqAzfYwNQSqeYK7nPBpyDSVFKc8iOQviIT6kgG7Cb-7qte0pn1L7178mLs03dviVV55NpT9729Rc138kdua6kMpndPY-TSRtouWgoHLODyjaBTnb3kL3eT-bjx3T29DAd385SJzHrUwEEiJwWeWY5igqFcTIrratsLm2J5BYKHC8zQSLXyEHzUqNcKGtiRFZiyC63vSvffa4p9MWyDo6axrbUrUMhpDIKESN49S8IXEA83EBEz_-gH93at3GNAlCh0FzqCPEt5HwXgqeqWPl6af13bCo22ouovdhoL3baY-Ri12tDlFl527o6_OYykDoDoSJ3tuVqIvr9llrrHIz4AU_EiDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195937047</pqid></control><display><type>article</type><title>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</title><source>IEEE Electronic Library (IEL)</source><creator>Amraoui, A. ; Montanari, A. ; Richardson, T. ; Urbanke, R.</creator><creatorcontrib>Amraoui, A. ; Montanari, A. ; Richardson, T. ; Urbanke, R.</creatorcontrib><description>We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.2009580</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Binary erasure channel ; Channels ; Codes ; Coding, codes ; Communication system control ; Computational complexity ; Data encryption ; density evolution ; Empirical analysis ; Error probability ; error probability curve ; Errors ; Exact sciences and technology ; finite-length analysis ; Floors ; H infinity control ; Information theory ; Information, signal and communications theory ; Iterative decoding ; Law ; low-density parity-check (LDPC) codes ; Optimization ; Parity check codes ; Performance analysis ; Physics ; Signal and communications theory ; Statistics ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2009-02, Vol.55 (2), p.473-498</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</citedby><cites>FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4777618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4777618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21472135$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Amraoui, A.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><title>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.</description><subject>Applied sciences</subject><subject>Binary erasure channel</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Communication system control</subject><subject>Computational complexity</subject><subject>Data encryption</subject><subject>density evolution</subject><subject>Empirical analysis</subject><subject>Error probability</subject><subject>error probability curve</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>finite-length analysis</subject><subject>Floors</subject><subject>H infinity control</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>Law</subject><subject>low-density parity-check (LDPC) codes</subject><subject>Optimization</subject><subject>Parity check codes</subject><subject>Performance analysis</subject><subject>Physics</subject><subject>Signal and communications theory</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMFLwzAUh4MoOKd3wUsRFC-deU3S5IEXmVMHAwXnuWTpq1a6diad4H9vxoYHDxJ4IeT7_eB9jJ0CHwFwvJ5P56OMc7MZqAzfYwNQSqeYK7nPBpyDSVFKc8iOQviIT6kgG7Cb-7qte0pn1L7178mLs03dviVV55NpT9729Rc138kdua6kMpndPY-TSRtouWgoHLODyjaBTnb3kL3eT-bjx3T29DAd385SJzHrUwEEiJwWeWY5igqFcTIrratsLm2J5BYKHC8zQSLXyEHzUqNcKGtiRFZiyC63vSvffa4p9MWyDo6axrbUrUMhpDIKESN49S8IXEA83EBEz_-gH93at3GNAlCh0FzqCPEt5HwXgqeqWPl6af13bCo22ouovdhoL3baY-Ri12tDlFl527o6_OYykDoDoSJ3tuVqIvr9llrrHIz4AU_EiDo</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Amraoui, A.</creator><creator>Montanari, A.</creator><creator>Richardson, T.</creator><creator>Urbanke, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</title><author>Amraoui, A. ; Montanari, A. ; Richardson, T. ; Urbanke, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Binary erasure channel</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Communication system control</topic><topic>Computational complexity</topic><topic>Data encryption</topic><topic>density evolution</topic><topic>Empirical analysis</topic><topic>Error probability</topic><topic>error probability curve</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>finite-length analysis</topic><topic>Floors</topic><topic>H infinity control</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>Law</topic><topic>low-density parity-check (LDPC) codes</topic><topic>Optimization</topic><topic>Parity check codes</topic><topic>Performance analysis</topic><topic>Physics</topic><topic>Signal and communications theory</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amraoui, A.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amraoui, A.</au><au>Montanari, A.</au><au>Richardson, T.</au><au>Urbanke, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>55</volume><issue>2</issue><spage>473</spage><epage>498</epage><pages>473-498</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.2009580</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-02, Vol.55 (2), p.473-498
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_34585999
source IEEE Electronic Library (IEL)
subjects Applied sciences
Binary erasure channel
Channels
Codes
Coding, codes
Communication system control
Computational complexity
Data encryption
density evolution
Empirical analysis
Error probability
error probability curve
Errors
Exact sciences and technology
finite-length analysis
Floors
H infinity control
Information theory
Information, signal and communications theory
Iterative decoding
Law
low-density parity-check (LDPC) codes
Optimization
Parity check codes
Performance analysis
Physics
Signal and communications theory
Statistics
Telecommunications and information theory
title Finite-Length Scaling for Iteratively Decoded LDPC Ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Length%20Scaling%20for%20Iteratively%20Decoded%20LDPC%20Ensembles&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Amraoui,%20A.&rft.date=2009-02-01&rft.volume=55&rft.issue=2&rft.spage=473&rft.epage=498&rft.pages=473-498&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.2009580&rft_dat=%3Cproquest_RIE%3E34585999%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195937047&rft_id=info:pmid/&rft_ieee_id=4777618&rfr_iscdi=true