Finite-Length Scaling for Iteratively Decoded LDPC Ensembles
We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2009-02, Vol.55 (2), p.473-498 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | 2 |
container_start_page | 473 |
container_title | IEEE transactions on information theory |
container_volume | 55 |
creator | Amraoui, A. Montanari, A. Richardson, T. Urbanke, R. |
description | We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization. |
doi_str_mv | 10.1109/TIT.2008.2009580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34585999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4777618</ieee_id><sourcerecordid>34585999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKd3wUsRFC-deU3S5IEXmVMHAwXnuWTpq1a6diad4H9vxoYHDxJ4IeT7_eB9jJ0CHwFwvJ5P56OMc7MZqAzfYwNQSqeYK7nPBpyDSVFKc8iOQviIT6kgG7Cb-7qte0pn1L7178mLs03dviVV55NpT9729Rc138kdua6kMpndPY-TSRtouWgoHLODyjaBTnb3kL3eT-bjx3T29DAd385SJzHrUwEEiJwWeWY5igqFcTIrratsLm2J5BYKHC8zQSLXyEHzUqNcKGtiRFZiyC63vSvffa4p9MWyDo6axrbUrUMhpDIKESN49S8IXEA83EBEz_-gH93at3GNAlCh0FzqCPEt5HwXgqeqWPl6af13bCo22ouovdhoL3baY-Ri12tDlFl527o6_OYykDoDoSJ3tuVqIvr9llrrHIz4AU_EiDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195937047</pqid></control><display><type>article</type><title>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</title><source>IEEE Electronic Library (IEL)</source><creator>Amraoui, A. ; Montanari, A. ; Richardson, T. ; Urbanke, R.</creator><creatorcontrib>Amraoui, A. ; Montanari, A. ; Richardson, T. ; Urbanke, R.</creatorcontrib><description>We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.2009580</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Binary erasure channel ; Channels ; Codes ; Coding, codes ; Communication system control ; Computational complexity ; Data encryption ; density evolution ; Empirical analysis ; Error probability ; error probability curve ; Errors ; Exact sciences and technology ; finite-length analysis ; Floors ; H infinity control ; Information theory ; Information, signal and communications theory ; Iterative decoding ; Law ; low-density parity-check (LDPC) codes ; Optimization ; Parity check codes ; Performance analysis ; Physics ; Signal and communications theory ; Statistics ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2009-02, Vol.55 (2), p.473-498</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</citedby><cites>FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4777618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4777618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21472135$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Amraoui, A.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><title>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.</description><subject>Applied sciences</subject><subject>Binary erasure channel</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Communication system control</subject><subject>Computational complexity</subject><subject>Data encryption</subject><subject>density evolution</subject><subject>Empirical analysis</subject><subject>Error probability</subject><subject>error probability curve</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>finite-length analysis</subject><subject>Floors</subject><subject>H infinity control</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>Law</subject><subject>low-density parity-check (LDPC) codes</subject><subject>Optimization</subject><subject>Parity check codes</subject><subject>Performance analysis</subject><subject>Physics</subject><subject>Signal and communications theory</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMFLwzAUh4MoOKd3wUsRFC-deU3S5IEXmVMHAwXnuWTpq1a6diad4H9vxoYHDxJ4IeT7_eB9jJ0CHwFwvJ5P56OMc7MZqAzfYwNQSqeYK7nPBpyDSVFKc8iOQviIT6kgG7Cb-7qte0pn1L7178mLs03dviVV55NpT9729Rc138kdua6kMpndPY-TSRtouWgoHLODyjaBTnb3kL3eT-bjx3T29DAd385SJzHrUwEEiJwWeWY5igqFcTIrratsLm2J5BYKHC8zQSLXyEHzUqNcKGtiRFZiyC63vSvffa4p9MWyDo6axrbUrUMhpDIKESN49S8IXEA83EBEz_-gH93at3GNAlCh0FzqCPEt5HwXgqeqWPl6af13bCo22ouovdhoL3baY-Ri12tDlFl527o6_OYykDoDoSJ3tuVqIvr9llrrHIz4AU_EiDo</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Amraoui, A.</creator><creator>Montanari, A.</creator><creator>Richardson, T.</creator><creator>Urbanke, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</title><author>Amraoui, A. ; Montanari, A. ; Richardson, T. ; Urbanke, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-31e1990eb62a093f938c42dacfa64ad9ecb51c0d23e36790170d794b5a8b624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Binary erasure channel</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Communication system control</topic><topic>Computational complexity</topic><topic>Data encryption</topic><topic>density evolution</topic><topic>Empirical analysis</topic><topic>Error probability</topic><topic>error probability curve</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>finite-length analysis</topic><topic>Floors</topic><topic>H infinity control</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>Law</topic><topic>low-density parity-check (LDPC) codes</topic><topic>Optimization</topic><topic>Parity check codes</topic><topic>Performance analysis</topic><topic>Physics</topic><topic>Signal and communications theory</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amraoui, A.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amraoui, A.</au><au>Montanari, A.</au><au>Richardson, T.</au><au>Urbanke, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Length Scaling for Iteratively Decoded LDPC Ensembles</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>55</volume><issue>2</issue><spage>473</spage><epage>498</epage><pages>473-498</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We investigate the behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called ldquowaterfall region.rdquo We show that the performance curves in this region follow a simple scaling law. We conjecture that essentially the same scaling behavior applies in a much more general setting and we provide some empirical evidence to support this conjecture. The scaling law, together with the error floor expressions developed previously, can be used for a fast finite-length optimization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.2009580</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2009-02, Vol.55 (2), p.473-498 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_34585999 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Binary erasure channel Channels Codes Coding, codes Communication system control Computational complexity Data encryption density evolution Empirical analysis Error probability error probability curve Errors Exact sciences and technology finite-length analysis Floors H infinity control Information theory Information, signal and communications theory Iterative decoding Law low-density parity-check (LDPC) codes Optimization Parity check codes Performance analysis Physics Signal and communications theory Statistics Telecommunications and information theory |
title | Finite-Length Scaling for Iteratively Decoded LDPC Ensembles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Length%20Scaling%20for%20Iteratively%20Decoded%20LDPC%20Ensembles&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Amraoui,%20A.&rft.date=2009-02-01&rft.volume=55&rft.issue=2&rft.spage=473&rft.epage=498&rft.pages=473-498&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.2009580&rft_dat=%3Cproquest_RIE%3E34585999%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195937047&rft_id=info:pmid/&rft_ieee_id=4777618&rfr_iscdi=true |