Efficient mesh motion using radial basis functions with data reduction algorithms

Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2009-09, Vol.228 (17), p.6231-6249
Hauptverfasser: Rendall, T.C.S., Allen, C.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6249
container_issue 17
container_start_page 6231
container_title Journal of computational physics
container_volume 228
creator Rendall, T.C.S.
Allen, C.B.
description Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is efficient since the structural mesh is usually small. However, as a stand alone mesh motion tool, where the surface mesh points control the motion, radial basis functions may be restricted by the size of the surface mesh, as an update of a single volume point depends on all surface points. In this paper a method is presented that allows an arbitrary deformation to be represented to within a desired tolerance by using a significantly reduced set of surface points intelligently identified in a fashion that minimises the error in the interpolated surface. This method may be used on much larger cases and is successfully demonstrated here for a 10 6 cell mesh, where the initial solve phase cost reduces by a factor of eight with the new scheme and the mesh update by a factor of 55. It has also been shown that the number of surface points required to represent the surface is only geometry dependent (i.e. grid size independent), and so this reduction factor actually increases for larger meshes.
doi_str_mv 10.1016/j.jcp.2009.05.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34584965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999109002721</els_id><sourcerecordid>34584965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6d87567cc72278ca6999f9e5d64e78a9f2e5f93399d68592e028a05f06f00b003</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF02upvxJtNkElxJqQ8QRNB1SDNJmzKPmjuj-O-d2uLS1YVzz7mPj5BLBjkDJm82-cZtcw6gcxA5sOKITBhoyHjJ5DGZAHCWaa3ZKTlD3ACAEjM1Ia-LEKKLvu1p43FNm66PXUsHjO2KJltFW9OlxYg0DK3b9ZB-xX5NK9tbmnw1_IrU1qsujXqD5-Qk2Br9xaFOyfv94m3-mD2_PDzN754zVwjVZ7JSpZClcyXnpXJWjscF7UUlZ75UVgfuRdBFoXUlldDcA1cWRAAZAJYAxZRc7-duU_cxeOxNE9H5urat7wY0xUyomZZiNLK90aUOMflgtik2Nn0bBmYHz2zMCM_s4BkQZoQ3Zq4Owy06W4dkWxfxL8iZAgmyHH23e58fP_2MPhncwXS-ism73lRd_GfLDz3GhG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34584965</pqid></control><display><type>article</type><title>Efficient mesh motion using radial basis functions with data reduction algorithms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rendall, T.C.S. ; Allen, C.B.</creator><creatorcontrib>Rendall, T.C.S. ; Allen, C.B.</creatorcontrib><description>Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is efficient since the structural mesh is usually small. However, as a stand alone mesh motion tool, where the surface mesh points control the motion, radial basis functions may be restricted by the size of the surface mesh, as an update of a single volume point depends on all surface points. In this paper a method is presented that allows an arbitrary deformation to be represented to within a desired tolerance by using a significantly reduced set of surface points intelligently identified in a fashion that minimises the error in the interpolated surface. This method may be used on much larger cases and is successfully demonstrated here for a 10 6 cell mesh, where the initial solve phase cost reduces by a factor of eight with the new scheme and the mesh update by a factor of 55. It has also been shown that the number of surface points required to represent the surface is only geometry dependent (i.e. grid size independent), and so this reduction factor actually increases for larger meshes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2009.05.013</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Aeroelastics ; CFD mesh deformation ; Computational techniques ; Exact sciences and technology ; Greedy algorithms ; Mathematical methods in physics ; Physics ; Radial basis functions</subject><ispartof>Journal of computational physics, 2009-09, Vol.228 (17), p.6231-6249</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-6d87567cc72278ca6999f9e5d64e78a9f2e5f93399d68592e028a05f06f00b003</citedby><cites>FETCH-LOGICAL-c358t-6d87567cc72278ca6999f9e5d64e78a9f2e5f93399d68592e028a05f06f00b003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2009.05.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21806067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rendall, T.C.S.</creatorcontrib><creatorcontrib>Allen, C.B.</creatorcontrib><title>Efficient mesh motion using radial basis functions with data reduction algorithms</title><title>Journal of computational physics</title><description>Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is efficient since the structural mesh is usually small. However, as a stand alone mesh motion tool, where the surface mesh points control the motion, radial basis functions may be restricted by the size of the surface mesh, as an update of a single volume point depends on all surface points. In this paper a method is presented that allows an arbitrary deformation to be represented to within a desired tolerance by using a significantly reduced set of surface points intelligently identified in a fashion that minimises the error in the interpolated surface. This method may be used on much larger cases and is successfully demonstrated here for a 10 6 cell mesh, where the initial solve phase cost reduces by a factor of eight with the new scheme and the mesh update by a factor of 55. It has also been shown that the number of surface points required to represent the surface is only geometry dependent (i.e. grid size independent), and so this reduction factor actually increases for larger meshes.</description><subject>Aeroelastics</subject><subject>CFD mesh deformation</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Greedy algorithms</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Radial basis functions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF02upvxJtNkElxJqQ8QRNB1SDNJmzKPmjuj-O-d2uLS1YVzz7mPj5BLBjkDJm82-cZtcw6gcxA5sOKITBhoyHjJ5DGZAHCWaa3ZKTlD3ACAEjM1Ia-LEKKLvu1p43FNm66PXUsHjO2KJltFW9OlxYg0DK3b9ZB-xX5NK9tbmnw1_IrU1qsujXqD5-Qk2Br9xaFOyfv94m3-mD2_PDzN754zVwjVZ7JSpZClcyXnpXJWjscF7UUlZ75UVgfuRdBFoXUlldDcA1cWRAAZAJYAxZRc7-duU_cxeOxNE9H5urat7wY0xUyomZZiNLK90aUOMflgtik2Nn0bBmYHz2zMCM_s4BkQZoQ3Zq4Owy06W4dkWxfxL8iZAgmyHH23e58fP_2MPhncwXS-ism73lRd_GfLDz3GhG4</recordid><startdate>20090920</startdate><enddate>20090920</enddate><creator>Rendall, T.C.S.</creator><creator>Allen, C.B.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090920</creationdate><title>Efficient mesh motion using radial basis functions with data reduction algorithms</title><author>Rendall, T.C.S. ; Allen, C.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6d87567cc72278ca6999f9e5d64e78a9f2e5f93399d68592e028a05f06f00b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aeroelastics</topic><topic>CFD mesh deformation</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Greedy algorithms</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Radial basis functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rendall, T.C.S.</creatorcontrib><creatorcontrib>Allen, C.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rendall, T.C.S.</au><au>Allen, C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient mesh motion using radial basis functions with data reduction algorithms</atitle><jtitle>Journal of computational physics</jtitle><date>2009-09-20</date><risdate>2009</risdate><volume>228</volume><issue>17</issue><spage>6231</spage><epage>6249</epage><pages>6231-6249</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is efficient since the structural mesh is usually small. However, as a stand alone mesh motion tool, where the surface mesh points control the motion, radial basis functions may be restricted by the size of the surface mesh, as an update of a single volume point depends on all surface points. In this paper a method is presented that allows an arbitrary deformation to be represented to within a desired tolerance by using a significantly reduced set of surface points intelligently identified in a fashion that minimises the error in the interpolated surface. This method may be used on much larger cases and is successfully demonstrated here for a 10 6 cell mesh, where the initial solve phase cost reduces by a factor of eight with the new scheme and the mesh update by a factor of 55. It has also been shown that the number of surface points required to represent the surface is only geometry dependent (i.e. grid size independent), and so this reduction factor actually increases for larger meshes.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2009.05.013</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2009-09, Vol.228 (17), p.6231-6249
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_34584965
source Elsevier ScienceDirect Journals Complete
subjects Aeroelastics
CFD mesh deformation
Computational techniques
Exact sciences and technology
Greedy algorithms
Mathematical methods in physics
Physics
Radial basis functions
title Efficient mesh motion using radial basis functions with data reduction algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20mesh%20motion%20using%20radial%20basis%20functions%20with%20data%20reduction%20algorithms&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Rendall,%20T.C.S.&rft.date=2009-09-20&rft.volume=228&rft.issue=17&rft.spage=6231&rft.epage=6249&rft.pages=6231-6249&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2009.05.013&rft_dat=%3Cproquest_cross%3E34584965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34584965&rft_id=info:pmid/&rft_els_id=S0021999109002721&rfr_iscdi=true