Distributed Skyline Retrieval with Low Bandwidth Consumption

We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2009-03, Vol.21 (3), p.384-400
Hauptverfasser: Zhu, Lin, Tao, Yufei, Zhou, Shuigeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 3
container_start_page 384
container_title IEEE transactions on knowledge and data engineering
container_volume 21
creator Zhu, Lin
Tao, Yufei
Zhou, Shuigeng
description We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.
doi_str_mv 10.1109/TKDE.2008.142
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34575949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4564468</ieee_id><sourcerecordid>2543468631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_BFFKzVoycvi6Cetmby2GTBi7b1gQVBew9pHpi63a2bXUu_vSktPXjwlMnMLwP5J8k5oAEAKm6nr6PxACMkBkDxQdIDxkSGoYDDWCMKGSWUHycnIcxRVFxAL7kb-dA2fta11qQfX-vSVzZ9t7Flf1SZrnz7mU7qVfqgKrPyJt6GdRW6xbL1dXWaHDlVBnu2O_vJ9HE8HT5nk7enl-H9JNOE8zbTBhtjFcVIzAwQhqwtgHICyGmhhDLYYSccU5hphahjWuQz0Ipgq7EG0k9utmuXTf3d2dDKhQ_alqWqbN0FKThDmHLGorz-VxLKOCtoEeHlHzivu6aKn5AFYEQgRySibIt0U4fQWCeXjV-oZi0ByU3icpO43CQuY-LRX-2WqqBV6RpVaR_2jzAQggXw6C62zltr92PKckpzQX4BYmiIog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912031603</pqid></control><display><type>article</type><title>Distributed Skyline Retrieval with Low Bandwidth Consumption</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Lin ; Tao, Yufei ; Zhou, Shuigeng</creator><creatorcontrib>Zhu, Lin ; Tao, Yufei ; Zhou, Shuigeng</creatorcontrib><description>We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2008.142</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bandwidth ; Computation ; Computer architecture ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data mining ; Data processing. List processing. Character string processing ; Distributed computing ; Distributed databases ; Exact sciences and technology ; Horizontal ; Internet ; Memory organisation. Data processing ; Mobile ad hoc networks ; Network servers ; Networks ; Partitioning ; Partitioning algorithms ; Servers ; Software ; Spatial databases ; Studies ; Web server</subject><ispartof>IEEE transactions on knowledge and data engineering, 2009-03, Vol.21 (3), p.384-400</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</citedby><cites>FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4564468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4564468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21332817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Tao, Yufei</creatorcontrib><creatorcontrib>Zhou, Shuigeng</creatorcontrib><title>Distributed Skyline Retrieval with Low Bandwidth Consumption</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Distributed computing</subject><subject>Distributed databases</subject><subject>Exact sciences and technology</subject><subject>Horizontal</subject><subject>Internet</subject><subject>Memory organisation. Data processing</subject><subject>Mobile ad hoc networks</subject><subject>Network servers</subject><subject>Networks</subject><subject>Partitioning</subject><subject>Partitioning algorithms</subject><subject>Servers</subject><subject>Software</subject><subject>Spatial databases</subject><subject>Studies</subject><subject>Web server</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90EtLAzEQB_BFFKzVoycvi6Cetmby2GTBi7b1gQVBew9pHpi63a2bXUu_vSktPXjwlMnMLwP5J8k5oAEAKm6nr6PxACMkBkDxQdIDxkSGoYDDWCMKGSWUHycnIcxRVFxAL7kb-dA2fta11qQfX-vSVzZ9t7Flf1SZrnz7mU7qVfqgKrPyJt6GdRW6xbL1dXWaHDlVBnu2O_vJ9HE8HT5nk7enl-H9JNOE8zbTBhtjFcVIzAwQhqwtgHICyGmhhDLYYSccU5hphahjWuQz0Ipgq7EG0k9utmuXTf3d2dDKhQ_alqWqbN0FKThDmHLGorz-VxLKOCtoEeHlHzivu6aKn5AFYEQgRySibIt0U4fQWCeXjV-oZi0ByU3icpO43CQuY-LRX-2WqqBV6RpVaR_2jzAQggXw6C62zltr92PKckpzQX4BYmiIog</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Zhu, Lin</creator><creator>Tao, Yufei</creator><creator>Zhou, Shuigeng</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>Distributed Skyline Retrieval with Low Bandwidth Consumption</title><author>Zhu, Lin ; Tao, Yufei ; Zhou, Shuigeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Distributed computing</topic><topic>Distributed databases</topic><topic>Exact sciences and technology</topic><topic>Horizontal</topic><topic>Internet</topic><topic>Memory organisation. Data processing</topic><topic>Mobile ad hoc networks</topic><topic>Network servers</topic><topic>Networks</topic><topic>Partitioning</topic><topic>Partitioning algorithms</topic><topic>Servers</topic><topic>Software</topic><topic>Spatial databases</topic><topic>Studies</topic><topic>Web server</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Tao, Yufei</creatorcontrib><creatorcontrib>Zhou, Shuigeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Lin</au><au>Tao, Yufei</au><au>Zhou, Shuigeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Skyline Retrieval with Low Bandwidth Consumption</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>21</volume><issue>3</issue><spage>384</spage><epage>400</epage><pages>384-400</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TKDE.2008.142</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2009-03, Vol.21 (3), p.384-400
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_34575949
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Bandwidth
Computation
Computer architecture
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data mining
Data processing. List processing. Character string processing
Distributed computing
Distributed databases
Exact sciences and technology
Horizontal
Internet
Memory organisation. Data processing
Mobile ad hoc networks
Network servers
Networks
Partitioning
Partitioning algorithms
Servers
Software
Spatial databases
Studies
Web server
title Distributed Skyline Retrieval with Low Bandwidth Consumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Skyline%20Retrieval%20with%20Low%20Bandwidth%20Consumption&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhu,%20Lin&rft.date=2009-03-01&rft.volume=21&rft.issue=3&rft.spage=384&rft.epage=400&rft.pages=384-400&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2008.142&rft_dat=%3Cproquest_RIE%3E2543468631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912031603&rft_id=info:pmid/&rft_ieee_id=4564468&rfr_iscdi=true