Distributed Skyline Retrieval with Low Bandwidth Consumption
We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2009-03, Vol.21 (3), p.384-400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 3 |
container_start_page | 384 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 21 |
creator | Zhu, Lin Tao, Yufei Zhou, Shuigeng |
description | We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness. |
doi_str_mv | 10.1109/TKDE.2008.142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34575949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4564468</ieee_id><sourcerecordid>2543468631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_BFFKzVoycvi6Cetmby2GTBi7b1gQVBew9pHpi63a2bXUu_vSktPXjwlMnMLwP5J8k5oAEAKm6nr6PxACMkBkDxQdIDxkSGoYDDWCMKGSWUHycnIcxRVFxAL7kb-dA2fta11qQfX-vSVzZ9t7Flf1SZrnz7mU7qVfqgKrPyJt6GdRW6xbL1dXWaHDlVBnu2O_vJ9HE8HT5nk7enl-H9JNOE8zbTBhtjFcVIzAwQhqwtgHICyGmhhDLYYSccU5hphahjWuQz0Ipgq7EG0k9utmuXTf3d2dDKhQ_alqWqbN0FKThDmHLGorz-VxLKOCtoEeHlHzivu6aKn5AFYEQgRySibIt0U4fQWCeXjV-oZi0ByU3icpO43CQuY-LRX-2WqqBV6RpVaR_2jzAQggXw6C62zltr92PKckpzQX4BYmiIog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912031603</pqid></control><display><type>article</type><title>Distributed Skyline Retrieval with Low Bandwidth Consumption</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Lin ; Tao, Yufei ; Zhou, Shuigeng</creator><creatorcontrib>Zhu, Lin ; Tao, Yufei ; Zhou, Shuigeng</creatorcontrib><description>We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2008.142</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bandwidth ; Computation ; Computer architecture ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data mining ; Data processing. List processing. Character string processing ; Distributed computing ; Distributed databases ; Exact sciences and technology ; Horizontal ; Internet ; Memory organisation. Data processing ; Mobile ad hoc networks ; Network servers ; Networks ; Partitioning ; Partitioning algorithms ; Servers ; Software ; Spatial databases ; Studies ; Web server</subject><ispartof>IEEE transactions on knowledge and data engineering, 2009-03, Vol.21 (3), p.384-400</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</citedby><cites>FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4564468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4564468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21332817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Tao, Yufei</creatorcontrib><creatorcontrib>Zhou, Shuigeng</creatorcontrib><title>Distributed Skyline Retrieval with Low Bandwidth Consumption</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Distributed computing</subject><subject>Distributed databases</subject><subject>Exact sciences and technology</subject><subject>Horizontal</subject><subject>Internet</subject><subject>Memory organisation. Data processing</subject><subject>Mobile ad hoc networks</subject><subject>Network servers</subject><subject>Networks</subject><subject>Partitioning</subject><subject>Partitioning algorithms</subject><subject>Servers</subject><subject>Software</subject><subject>Spatial databases</subject><subject>Studies</subject><subject>Web server</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90EtLAzEQB_BFFKzVoycvi6Cetmby2GTBi7b1gQVBew9pHpi63a2bXUu_vSktPXjwlMnMLwP5J8k5oAEAKm6nr6PxACMkBkDxQdIDxkSGoYDDWCMKGSWUHycnIcxRVFxAL7kb-dA2fta11qQfX-vSVzZ9t7Flf1SZrnz7mU7qVfqgKrPyJt6GdRW6xbL1dXWaHDlVBnu2O_vJ9HE8HT5nk7enl-H9JNOE8zbTBhtjFcVIzAwQhqwtgHICyGmhhDLYYSccU5hphahjWuQz0Ipgq7EG0k9utmuXTf3d2dDKhQ_alqWqbN0FKThDmHLGorz-VxLKOCtoEeHlHzivu6aKn5AFYEQgRySibIt0U4fQWCeXjV-oZi0ByU3icpO43CQuY-LRX-2WqqBV6RpVaR_2jzAQggXw6C62zltr92PKckpzQX4BYmiIog</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Zhu, Lin</creator><creator>Tao, Yufei</creator><creator>Zhou, Shuigeng</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>Distributed Skyline Retrieval with Low Bandwidth Consumption</title><author>Zhu, Lin ; Tao, Yufei ; Zhou, Shuigeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-cd2ddea4208bd1350ee9147310fc8a8ad2f2f8f5a25ca04f5c86b1ca32ec2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Distributed computing</topic><topic>Distributed databases</topic><topic>Exact sciences and technology</topic><topic>Horizontal</topic><topic>Internet</topic><topic>Memory organisation. Data processing</topic><topic>Mobile ad hoc networks</topic><topic>Network servers</topic><topic>Networks</topic><topic>Partitioning</topic><topic>Partitioning algorithms</topic><topic>Servers</topic><topic>Software</topic><topic>Spatial databases</topic><topic>Studies</topic><topic>Web server</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Tao, Yufei</creatorcontrib><creatorcontrib>Zhou, Shuigeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Lin</au><au>Tao, Yufei</au><au>Zhou, Shuigeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Skyline Retrieval with Low Bandwidth Consumption</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>21</volume><issue>3</issue><spage>384</spage><epage>400</epage><pages>384-400</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>We consider skyline computation when the underlying data set is horizontally partitioned onto geographically distant servers that are connected to the Internet. The existing solutions are not suitable for our problem, because they have at least one of the following drawbacks: (1) applicable only to distributed systems adopting vertical partitioning or restricted horizontal partitioning, (2) effective only when each server has limited computing and communication abilities, and (3) optimized only for skyline search in subspaces but inefficient in the full space. This paper proposes an algorithm, called feedback-based distributed skyline (FDS), to support arbitrary horizontal partitioning. FDS aims at minimizing the network bandwidth, measured in the number of tuples transmitted over the network. The core of FDS is a novel feedback-driven mechanism, where the coordinator iteratively transmits certain feedback to each participant. Participants can leverage such information to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive experimentation confirms that FDS significantly outperforms alternative approaches in both effectiveness and progressiveness.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TKDE.2008.142</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2009-03, Vol.21 (3), p.384-400 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_miscellaneous_34575949 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Bandwidth Computation Computer architecture Computer science control theory systems Computer systems and distributed systems. User interface Data mining Data processing. List processing. Character string processing Distributed computing Distributed databases Exact sciences and technology Horizontal Internet Memory organisation. Data processing Mobile ad hoc networks Network servers Networks Partitioning Partitioning algorithms Servers Software Spatial databases Studies Web server |
title | Distributed Skyline Retrieval with Low Bandwidth Consumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Skyline%20Retrieval%20with%20Low%20Bandwidth%20Consumption&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhu,%20Lin&rft.date=2009-03-01&rft.volume=21&rft.issue=3&rft.spage=384&rft.epage=400&rft.pages=384-400&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2008.142&rft_dat=%3Cproquest_RIE%3E2543468631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912031603&rft_id=info:pmid/&rft_ieee_id=4564468&rfr_iscdi=true |