Data mining approach for supply unbalance detection in induction motor

This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2 f) in the signal obtained b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2009-11, Vol.36 (9), p.11808-11813
Hauptverfasser: Cakir, Abduelkadir, Calis, Hakan, Kuecueksille, Ecir U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11813
container_issue 9
container_start_page 11808
container_title Expert systems with applications
container_volume 36
creator Cakir, Abduelkadir
Calis, Hakan
Kuecueksille, Ecir U
description This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2 f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.
doi_str_mv 10.1016/j.eswa.2009.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34574139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409003558</els_id><sourcerecordid>34574139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU89eWudNEmzBS-yuioseNFzSNOpZmmbmrTK_ntT6lkYZhiYb3jvEXJNIaNAi9tDhuFHZzlAmQHPAIoTsqIbydJCluyUrKAUMuVU8nNyEcIBgEoAuSK7Bz3qpLO97T8SPQzeafOZNM4nYRqG9phMfaVb3RtMahzRjNb1iZ2rnpalc6Pzl-Ss0W3Aq7-5Ju-7x7ftc7p_fXrZ3u9Twxgd06YyVUmFAZFXQhSokTZlbKaWRV7qRuQ1A503Fd9oyUS9QSG5LCTqiEnJ2ZrcLH-j0K8Jw6g6Gwy2USG6KSjGI0BZGQ_z5dB4F4LHRg3edtofFQU1R6YOao5MzZEp4CpGFqG7BcJo4duiV8FYjN5r66N1VTv7H_4L8jF14A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34574139</pqid></control><display><type>article</type><title>Data mining approach for supply unbalance detection in induction motor</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cakir, Abduelkadir ; Calis, Hakan ; Kuecueksille, Ecir U</creator><creatorcontrib>Cakir, Abduelkadir ; Calis, Hakan ; Kuecueksille, Ecir U</creatorcontrib><description>This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2 f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.04.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Current zero crossing ; Data mining ; Fault detection ; Induction motor ; Voltage unbalance</subject><ispartof>Expert systems with applications, 2009-11, Vol.36 (9), p.11808-11813</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</citedby><cites>FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Cakir, Abduelkadir</creatorcontrib><creatorcontrib>Calis, Hakan</creatorcontrib><creatorcontrib>Kuecueksille, Ecir U</creatorcontrib><title>Data mining approach for supply unbalance detection in induction motor</title><title>Expert systems with applications</title><description>This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2 f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.</description><subject>Current zero crossing</subject><subject>Data mining</subject><subject>Fault detection</subject><subject>Induction motor</subject><subject>Voltage unbalance</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU89eWudNEmzBS-yuioseNFzSNOpZmmbmrTK_ntT6lkYZhiYb3jvEXJNIaNAi9tDhuFHZzlAmQHPAIoTsqIbydJCluyUrKAUMuVU8nNyEcIBgEoAuSK7Bz3qpLO97T8SPQzeafOZNM4nYRqG9phMfaVb3RtMahzRjNb1iZ2rnpalc6Pzl-Ss0W3Aq7-5Ju-7x7ftc7p_fXrZ3u9Twxgd06YyVUmFAZFXQhSokTZlbKaWRV7qRuQ1A503Fd9oyUS9QSG5LCTqiEnJ2ZrcLH-j0K8Jw6g6Gwy2USG6KSjGI0BZGQ_z5dB4F4LHRg3edtofFQU1R6YOao5MzZEp4CpGFqG7BcJo4duiV8FYjN5r66N1VTv7H_4L8jF14A</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Cakir, Abduelkadir</creator><creator>Calis, Hakan</creator><creator>Kuecueksille, Ecir U</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>Data mining approach for supply unbalance detection in induction motor</title><author>Cakir, Abduelkadir ; Calis, Hakan ; Kuecueksille, Ecir U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Current zero crossing</topic><topic>Data mining</topic><topic>Fault detection</topic><topic>Induction motor</topic><topic>Voltage unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakir, Abduelkadir</creatorcontrib><creatorcontrib>Calis, Hakan</creatorcontrib><creatorcontrib>Kuecueksille, Ecir U</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakir, Abduelkadir</au><au>Calis, Hakan</au><au>Kuecueksille, Ecir U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining approach for supply unbalance detection in induction motor</atitle><jtitle>Expert systems with applications</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>36</volume><issue>9</issue><spage>11808</spage><epage>11813</epage><pages>11808-11813</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2 f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.04.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2009-11, Vol.36 (9), p.11808-11813
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_34574139
source ScienceDirect Journals (5 years ago - present)
subjects Current zero crossing
Data mining
Fault detection
Induction motor
Voltage unbalance
title Data mining approach for supply unbalance detection in induction motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20approach%20for%20supply%20unbalance%20detection%20in%20induction%20motor&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Cakir,%20Abduelkadir&rft.date=2009-11-01&rft.volume=36&rft.issue=9&rft.spage=11808&rft.epage=11813&rft.pages=11808-11813&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.04.006&rft_dat=%3Cproquest_cross%3E34574139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34574139&rft_id=info:pmid/&rft_els_id=S0957417409003558&rfr_iscdi=true