Data mining approach for supply unbalance detection in induction motor
This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2 f) in the signal obtained b...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2009-11, Vol.36 (9), p.11808-11813 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11813 |
---|---|
container_issue | 9 |
container_start_page | 11808 |
container_title | Expert systems with applications |
container_volume | 36 |
creator | Cakir, Abduelkadir Calis, Hakan Kuecueksille, Ecir U |
description | This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2
f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model. |
doi_str_mv | 10.1016/j.eswa.2009.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34574139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409003558</els_id><sourcerecordid>34574139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU89eWudNEmzBS-yuioseNFzSNOpZmmbmrTK_ntT6lkYZhiYb3jvEXJNIaNAi9tDhuFHZzlAmQHPAIoTsqIbydJCluyUrKAUMuVU8nNyEcIBgEoAuSK7Bz3qpLO97T8SPQzeafOZNM4nYRqG9phMfaVb3RtMahzRjNb1iZ2rnpalc6Pzl-Ss0W3Aq7-5Ju-7x7ftc7p_fXrZ3u9Twxgd06YyVUmFAZFXQhSokTZlbKaWRV7qRuQ1A503Fd9oyUS9QSG5LCTqiEnJ2ZrcLH-j0K8Jw6g6Gwy2USG6KSjGI0BZGQ_z5dB4F4LHRg3edtofFQU1R6YOao5MzZEp4CpGFqG7BcJo4duiV8FYjN5r66N1VTv7H_4L8jF14A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34574139</pqid></control><display><type>article</type><title>Data mining approach for supply unbalance detection in induction motor</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cakir, Abduelkadir ; Calis, Hakan ; Kuecueksille, Ecir U</creator><creatorcontrib>Cakir, Abduelkadir ; Calis, Hakan ; Kuecueksille, Ecir U</creatorcontrib><description>This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2
f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.04.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Current zero crossing ; Data mining ; Fault detection ; Induction motor ; Voltage unbalance</subject><ispartof>Expert systems with applications, 2009-11, Vol.36 (9), p.11808-11813</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</citedby><cites>FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Cakir, Abduelkadir</creatorcontrib><creatorcontrib>Calis, Hakan</creatorcontrib><creatorcontrib>Kuecueksille, Ecir U</creatorcontrib><title>Data mining approach for supply unbalance detection in induction motor</title><title>Expert systems with applications</title><description>This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2
f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.</description><subject>Current zero crossing</subject><subject>Data mining</subject><subject>Fault detection</subject><subject>Induction motor</subject><subject>Voltage unbalance</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU89eWudNEmzBS-yuioseNFzSNOpZmmbmrTK_ntT6lkYZhiYb3jvEXJNIaNAi9tDhuFHZzlAmQHPAIoTsqIbydJCluyUrKAUMuVU8nNyEcIBgEoAuSK7Bz3qpLO97T8SPQzeafOZNM4nYRqG9phMfaVb3RtMahzRjNb1iZ2rnpalc6Pzl-Ss0W3Aq7-5Ju-7x7ftc7p_fXrZ3u9Twxgd06YyVUmFAZFXQhSokTZlbKaWRV7qRuQ1A503Fd9oyUS9QSG5LCTqiEnJ2ZrcLH-j0K8Jw6g6Gwy2USG6KSjGI0BZGQ_z5dB4F4LHRg3edtofFQU1R6YOao5MzZEp4CpGFqG7BcJo4duiV8FYjN5r66N1VTv7H_4L8jF14A</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Cakir, Abduelkadir</creator><creator>Calis, Hakan</creator><creator>Kuecueksille, Ecir U</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>Data mining approach for supply unbalance detection in induction motor</title><author>Cakir, Abduelkadir ; Calis, Hakan ; Kuecueksille, Ecir U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-fbcb915c052b556eae1f9ae1cd7629af52d30a2fb48a735d8e574767eab917743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Current zero crossing</topic><topic>Data mining</topic><topic>Fault detection</topic><topic>Induction motor</topic><topic>Voltage unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakir, Abduelkadir</creatorcontrib><creatorcontrib>Calis, Hakan</creatorcontrib><creatorcontrib>Kuecueksille, Ecir U</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakir, Abduelkadir</au><au>Calis, Hakan</au><au>Kuecueksille, Ecir U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining approach for supply unbalance detection in induction motor</atitle><jtitle>Expert systems with applications</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>36</volume><issue>9</issue><spage>11808</spage><epage>11813</epage><pages>11808-11813</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2
f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.04.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2009-11, Vol.36 (9), p.11808-11813 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_34574139 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Current zero crossing Data mining Fault detection Induction motor Voltage unbalance |
title | Data mining approach for supply unbalance detection in induction motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20approach%20for%20supply%20unbalance%20detection%20in%20induction%20motor&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Cakir,%20Abduelkadir&rft.date=2009-11-01&rft.volume=36&rft.issue=9&rft.spage=11808&rft.epage=11813&rft.pages=11808-11813&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.04.006&rft_dat=%3Cproquest_cross%3E34574139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34574139&rft_id=info:pmid/&rft_els_id=S0957417409003558&rfr_iscdi=true |