Effect of Poisson’s Ratio on Three-Dimensional Stress Distribution
An examination of the effect of Poisson’s ratio on stress distribution is important to interpret the results of a stress-strain analysis by using experimental methods because the material of the model frequently has a different Poisson’s ratio from that of the prototype. In linear elasticity, the ef...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2009-01, Vol.76 (1), p.014506 (3)-014506 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 014506 (3) |
---|---|
container_issue | 1 |
container_start_page | 014506 (3) |
container_title | Journal of applied mechanics |
container_volume | 76 |
creator | Abdulaliyev, Z Ataoglu, S |
description | An examination of the effect of Poisson’s ratio on stress distribution is important to interpret the results of a stress-strain analysis by using experimental methods because the material of the model frequently has a different Poisson’s ratio from that of the prototype. In linear elasticity, the effect of Poisson’s ratio on three-dimensional stress distribution is theoretically explained for simply connected bodies by using static methods in this study. It is proven that the stress components are independent from Poisson’s ratio in sections of the body where the stress components arising are in equilibrium only with surface tractions. This result is useful in interpreting three-dimensional photoelasticity and other experiments and even in guiding the design. |
doi_str_mv | 10.1115/1.2966218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34574132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082203926</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-7b81710bb78958341987f61f3f5640eb1dcc630b18507407f7424a0b47efb2b53</originalsourceid><addsrcrecordid>eNp90LlOxDAUBVALgcSwFNQ0aUBQBPy8p0QzwyKNBGKpIzvYwigTg19S0PEb_B5fQtCMKKlec97V1SXkAOgZAMhzOGOVUgzMBpmAZKasKFebZEIpg9JUXG2THcRXSqk0SkzIbB6Cb_oiheIuRcTUfX9-YXFv-5iK1BWPL9n7chaXvsOYOtsWD332iMUsYp-jG0bX7ZGtYFv0--u7S54u54_T63Jxe3UzvViUlgvel9oZ0ECd06aShguojA4KAg9SCeodPDeN4tSBkVQLqoMWTFjqhPbBMSf5Ljle5b7l9D547OtlxMa3re18GrDmQmoBnI3w5F8I1DBGecXUSE9XtMkJMftQv-W4tPljRPXvpDXU60lHe7SOtdjYNmTbNRH_HhhwUMLo0R2unMWlr1_TkMfhxnqVZFLwH9uxfQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203926</pqid></control><display><type>article</type><title>Effect of Poisson’s Ratio on Three-Dimensional Stress Distribution</title><source>ASME Transactions Journals (Current)</source><creator>Abdulaliyev, Z ; Ataoglu, S</creator><creatorcontrib>Abdulaliyev, Z ; Ataoglu, S</creatorcontrib><description>An examination of the effect of Poisson’s ratio on stress distribution is important to interpret the results of a stress-strain analysis by using experimental methods because the material of the model frequently has a different Poisson’s ratio from that of the prototype. In linear elasticity, the effect of Poisson’s ratio on three-dimensional stress distribution is theoretically explained for simply connected bodies by using static methods in this study. It is proven that the stress components are independent from Poisson’s ratio in sections of the body where the stress components arising are in equilibrium only with surface tractions. This result is useful in interpreting three-dimensional photoelasticity and other experiments and even in guiding the design.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.2966218</identifier><identifier>CODEN: JAMCAV</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Design engineering ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Poissons ratio ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress concentration ; Stress distribution ; Stress-strain relationships ; Stresses ; Structural and continuum mechanics ; Three dimensional ; Traction</subject><ispartof>Journal of applied mechanics, 2009-01, Vol.76 (1), p.014506 (3)-014506 (3)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-7b81710bb78958341987f61f3f5640eb1dcc630b18507407f7424a0b47efb2b53</citedby><cites>FETCH-LOGICAL-a343t-7b81710bb78958341987f61f3f5640eb1dcc630b18507407f7424a0b47efb2b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21316487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdulaliyev, Z</creatorcontrib><creatorcontrib>Ataoglu, S</creatorcontrib><title>Effect of Poisson’s Ratio on Three-Dimensional Stress Distribution</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>An examination of the effect of Poisson’s ratio on stress distribution is important to interpret the results of a stress-strain analysis by using experimental methods because the material of the model frequently has a different Poisson’s ratio from that of the prototype. In linear elasticity, the effect of Poisson’s ratio on three-dimensional stress distribution is theoretically explained for simply connected bodies by using static methods in this study. It is proven that the stress components are independent from Poisson’s ratio in sections of the body where the stress components arising are in equilibrium only with surface tractions. This result is useful in interpreting three-dimensional photoelasticity and other experiments and even in guiding the design.</description><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Poissons ratio</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress-strain relationships</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Three dimensional</subject><subject>Traction</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90LlOxDAUBVALgcSwFNQ0aUBQBPy8p0QzwyKNBGKpIzvYwigTg19S0PEb_B5fQtCMKKlec97V1SXkAOgZAMhzOGOVUgzMBpmAZKasKFebZEIpg9JUXG2THcRXSqk0SkzIbB6Cb_oiheIuRcTUfX9-YXFv-5iK1BWPL9n7chaXvsOYOtsWD332iMUsYp-jG0bX7ZGtYFv0--u7S54u54_T63Jxe3UzvViUlgvel9oZ0ECd06aShguojA4KAg9SCeodPDeN4tSBkVQLqoMWTFjqhPbBMSf5Ljle5b7l9D547OtlxMa3re18GrDmQmoBnI3w5F8I1DBGecXUSE9XtMkJMftQv-W4tPljRPXvpDXU60lHe7SOtdjYNmTbNRH_HhhwUMLo0R2unMWlr1_TkMfhxnqVZFLwH9uxfQQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Abdulaliyev, Z</creator><creator>Ataoglu, S</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090101</creationdate><title>Effect of Poisson’s Ratio on Three-Dimensional Stress Distribution</title><author>Abdulaliyev, Z ; Ataoglu, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-7b81710bb78958341987f61f3f5640eb1dcc630b18507407f7424a0b47efb2b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Poissons ratio</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress-strain relationships</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Three dimensional</topic><topic>Traction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdulaliyev, Z</creatorcontrib><creatorcontrib>Ataoglu, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdulaliyev, Z</au><au>Ataoglu, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Poisson’s Ratio on Three-Dimensional Stress Distribution</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>76</volume><issue>1</issue><spage>014506 (3)</spage><epage>014506 (3)</epage><pages>014506 (3)-014506 (3)</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><coden>JAMCAV</coden><abstract>An examination of the effect of Poisson’s ratio on stress distribution is important to interpret the results of a stress-strain analysis by using experimental methods because the material of the model frequently has a different Poisson’s ratio from that of the prototype. In linear elasticity, the effect of Poisson’s ratio on three-dimensional stress distribution is theoretically explained for simply connected bodies by using static methods in this study. It is proven that the stress components are independent from Poisson’s ratio in sections of the body where the stress components arising are in equilibrium only with surface tractions. This result is useful in interpreting three-dimensional photoelasticity and other experiments and even in guiding the design.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2966218</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8936 |
ispartof | Journal of applied mechanics, 2009-01, Vol.76 (1), p.014506 (3)-014506 (3) |
issn | 0021-8936 1528-9036 |
language | eng |
recordid | cdi_proquest_miscellaneous_34574132 |
source | ASME Transactions Journals (Current) |
subjects | Design engineering Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Poissons ratio Solid mechanics Static elasticity (thermoelasticity...) Stress concentration Stress distribution Stress-strain relationships Stresses Structural and continuum mechanics Three dimensional Traction |
title | Effect of Poisson’s Ratio on Three-Dimensional Stress Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Poisson%E2%80%99s%20Ratio%20on%20Three-Dimensional%20Stress%20Distribution&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Abdulaliyev,%20Z&rft.date=2009-01-01&rft.volume=76&rft.issue=1&rft.spage=014506%20(3)&rft.epage=014506%20(3)&rft.pages=014506%20(3)-014506%20(3)&rft.issn=0021-8936&rft.eissn=1528-9036&rft.coden=JAMCAV&rft_id=info:doi/10.1115/1.2966218&rft_dat=%3Cproquest_cross%3E1082203926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082203926&rft_id=info:pmid/&rfr_iscdi=true |